metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{N-[1-(2-oxidophen­yl)ethyl­­idene]-L-serinato}copper(II) monohydrate

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China, and bDepartment of Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 23 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, [Cu(C11H11NO4)(H2O)]·H2O, each CuII ion is four-coordinated by one N and two O atoms from the tridentate Schiff base ligand, and by one O atom from the coordinated water mol­ecule in a distorted square-planar geometry. Inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules and solvent water mol­ecules into flattened columns propagated in [100].

Related literature

For general background to the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formyl­pyridine or their analogues, and α-amino acids, see: Casella & Guillotti (1983[Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259-2266.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]). For related structures, see: Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Basu Baul et al. (2007[Basu Baul, T. S., Masharing, C., Ruisi, G., Jir ásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]). For details of the synthesis, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H11NO4)(H2O)]·H2O

  • Mr = 320.78

  • Orthorhombic, P 21 21 21

  • a = 5.6701 (9) Å

  • b = 13.788 (2) Å

  • c = 15.536 (2) Å

  • V = 1214.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.659, Tmax = 0.712

  • 6314 measured reflections

  • 2149 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.09

  • 2149 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 869 Friedel pairs

  • Flack parameter: 0.011 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 1.84 2.651 (3) 171
O1W—H1WA⋯O2Wii 0.82 1.91 2.694 (3) 161
O1W—H1WB⋯O2iii 0.85 1.92 2.740 (3) 162
O2W—H2WA⋯O4 0.85 2.04 2.837 (3) 156
O2W—H2WB⋯O1ii 0.85 2.02 2.817 (3) 157
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-Hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title compound (I).

The asymmetric unit of (I) contains a monomeric square-planar coordinated CuII complex and one solvate water molecule (Fig. 1). The Cu—N bond length is 1.9335 (19) Å, while Cu—O bond lengths lie in the range 1.8595 (18)-1.9677 (18) Å.

The crystal structure is stabilized by O—H···O type hydrogen bonds (Table 1), which link complex molecules and solvent water molecules into flattened columns propagated in direction [100].

Related literature top

For general background to the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids, see: Casella & Guillotti (1983); Vigato & Tamburini (2004); Ganguly et al. (2008). For related structures, see: Usman et al. (2003); Parekh et al. (2006); Basu Baul et al. (2007). For details of the synthesis, see Plesch et al. (1997).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-serine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-Hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper (II) acetate monohydrate (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark green solution was filtered and left for several days, dark green crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93-0.97 Å, O—H = 0.82-0.85 Å) and refined as riding, with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Aqua{N-[1-(2-oxidophenyl)ethylidene]-L-serinato}copper(II) monohydrate top
Crystal data top
[Cu(C11H11NO4)(H2O)]·H2OF(000) = 660
Mr = 320.78Dx = 1.754 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3823 reflections
a = 5.6701 (9) Åθ = 2.6–27.3°
b = 13.788 (2) ŵ = 1.82 mm1
c = 15.536 (2) ÅT = 296 K
V = 1214.6 (3) Å3Block, dark green
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2149 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 26
Tmin = 0.659, Tmax = 0.712k = 1616
6314 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.2008P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.21 e Å3
2149 reflectionsΔρmin = 0.24 e Å3
176 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0120 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 869 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.011 (13)
Crystal data top
[Cu(C11H11NO4)(H2O)]·H2OV = 1214.6 (3) Å3
Mr = 320.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6701 (9) ŵ = 1.82 mm1
b = 13.788 (2) ÅT = 296 K
c = 15.536 (2) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2149 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2038 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.712Rint = 0.027
6314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.21 e Å3
S = 1.09Δρmin = 0.24 e Å3
2149 reflectionsAbsolute structure: Flack (1983), 869 Friedel pairs
176 parametersAbsolute structure parameter: 0.011 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18718 (6)0.09862 (2)0.532935 (19)0.02947 (11)
C10.5839 (5)0.02296 (17)0.50130 (16)0.0286 (6)
C20.7793 (5)0.04620 (19)0.44924 (16)0.0378 (7)
H20.80840.00920.40030.045*
C30.9287 (5)0.12205 (18)0.46860 (19)0.0390 (6)
H31.05540.13600.43260.047*
C40.8899 (5)0.17732 (19)0.54164 (19)0.0382 (7)
H40.99030.22840.55530.046*
C50.7019 (6)0.15591 (18)0.59347 (16)0.0340 (6)
H50.67800.19330.64250.041*
C60.5428 (5)0.07988 (16)0.57613 (15)0.0268 (6)
C70.3496 (5)0.06175 (17)0.63784 (15)0.0283 (6)
C80.0332 (5)0.03559 (19)0.69616 (16)0.0304 (6)
H80.04840.02380.71390.036*
C90.1447 (4)0.10765 (19)0.66029 (18)0.0354 (6)
C100.3232 (7)0.1327 (2)0.71079 (18)0.0469 (8)
H10A0.45390.12600.74960.070*
H10B0.32000.19760.68830.070*
H10C0.17880.11990.74100.070*
C110.1466 (5)0.0833 (2)0.77456 (16)0.0393 (7)
H11A0.02810.09310.81870.047*
H11B0.26710.04080.79780.047*
N10.2116 (4)0.01209 (14)0.63046 (12)0.0247 (4)
O10.4525 (3)0.05113 (12)0.47659 (11)0.0372 (4)
O20.0953 (4)0.14741 (13)0.58792 (13)0.0409 (5)
O30.3178 (4)0.12658 (15)0.70381 (15)0.0552 (6)
O40.2492 (3)0.17369 (14)0.75275 (13)0.0412 (5)
H4A0.38690.16540.73830.062*
O1W0.1373 (4)0.18950 (14)0.43700 (13)0.0523 (6)
H1WA0.00260.18970.42360.078*
H1WB0.19230.24660.43180.078*
O2W0.2141 (4)0.33399 (16)0.63903 (14)0.0550 (6)
H2WA0.20360.27760.66070.066*
H2WB0.10450.35690.60770.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02747 (17)0.02884 (16)0.03211 (16)0.00077 (15)0.00322 (15)0.00440 (13)
C10.0274 (14)0.0282 (12)0.0303 (12)0.0033 (11)0.0041 (12)0.0019 (11)
C20.0400 (17)0.0408 (15)0.0324 (14)0.0022 (13)0.0062 (13)0.0010 (11)
C30.0339 (15)0.0387 (15)0.0446 (15)0.0005 (12)0.0076 (15)0.0103 (13)
C40.0327 (15)0.0318 (13)0.0500 (17)0.0059 (12)0.0027 (14)0.0036 (14)
C50.0379 (15)0.0273 (12)0.0368 (14)0.0001 (14)0.0022 (15)0.0017 (11)
C60.0254 (13)0.0248 (13)0.0302 (12)0.0027 (11)0.0013 (11)0.0041 (10)
C70.0267 (15)0.0286 (12)0.0296 (12)0.0029 (11)0.0028 (12)0.0015 (10)
C80.0228 (14)0.0329 (13)0.0354 (14)0.0055 (12)0.0067 (12)0.0012 (11)
C90.0238 (15)0.0309 (13)0.0517 (16)0.0047 (13)0.0008 (13)0.0103 (14)
C100.0446 (19)0.0500 (16)0.0459 (16)0.0087 (16)0.0081 (17)0.0212 (13)
C110.0340 (17)0.0547 (17)0.0291 (12)0.0025 (14)0.0084 (12)0.0040 (13)
N10.0224 (11)0.0263 (10)0.0254 (10)0.0043 (10)0.0002 (10)0.0010 (8)
O10.0353 (10)0.0426 (10)0.0336 (10)0.0061 (9)0.0052 (9)0.0097 (8)
O20.0347 (11)0.0372 (10)0.0509 (12)0.0099 (9)0.0037 (10)0.0023 (9)
O30.0287 (12)0.0614 (14)0.0754 (15)0.0059 (11)0.0118 (13)0.0107 (11)
O40.0291 (13)0.0436 (10)0.0508 (12)0.0034 (8)0.0022 (9)0.0159 (9)
O1W0.0461 (15)0.0468 (12)0.0639 (13)0.0085 (10)0.0166 (11)0.0273 (11)
O2W0.0374 (12)0.0585 (13)0.0690 (14)0.0080 (12)0.0080 (12)0.0245 (11)
Geometric parameters (Å, º) top
Cu1—O11.8595 (18)C8—N11.473 (3)
Cu1—N11.9335 (19)C8—C91.522 (4)
Cu1—O21.936 (2)C8—C111.527 (4)
Cu1—O1W1.9677 (18)C8—H80.9800
C1—O11.322 (3)C9—O31.220 (3)
C1—C21.408 (4)C9—O21.282 (3)
C1—C61.422 (3)C10—H10A0.9600
C2—C31.379 (4)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.385 (4)C11—O41.416 (3)
C3—H30.9300C11—H11A0.9700
C4—C51.368 (4)C11—H11B0.9700
C4—H40.9300O4—H4A0.8200
C5—C61.409 (4)O1W—H1WA0.8200
C5—H50.9300O1W—H1WB0.8502
C6—C71.477 (3)O2W—H2WA0.8500
C7—N11.289 (3)O2W—H2WB0.8500
C7—C101.505 (3)
O1—Cu1—N195.37 (8)C9—C8—C11106.9 (2)
O1—Cu1—O2177.99 (9)N1—C8—H8109.6
N1—Cu1—O285.87 (9)C9—C8—H8109.6
O1—Cu1—O1W89.08 (9)C11—C8—H8109.6
N1—Cu1—O1W175.46 (9)O3—C9—O2124.8 (3)
O2—Cu1—O1W89.66 (9)O3—C9—C8118.0 (3)
O1—C1—C2116.9 (2)O2—C9—C8117.1 (2)
O1—C1—C6124.9 (2)C7—C10—H10A109.5
C2—C1—C6118.2 (2)C7—C10—H10B109.5
C3—C2—C1122.0 (2)H10A—C10—H10B109.5
C3—C2—H2119.0C7—C10—H10C109.5
C1—C2—H2119.0H10A—C10—H10C109.5
C2—C3—C4119.9 (3)H10B—C10—H10C109.5
C2—C3—H3120.1O4—C11—C8111.2 (2)
C4—C3—H3120.1O4—C11—H11A109.4
C5—C4—C3119.2 (2)C8—C11—H11A109.4
C5—C4—H4120.4O4—C11—H11B109.4
C3—C4—H4120.4C8—C11—H11B109.4
C4—C5—C6123.1 (2)H11A—C11—H11B108.0
C4—C5—H5118.4C7—N1—C8121.9 (2)
C6—C5—H5118.4C7—N1—Cu1126.91 (17)
C5—C6—C1117.5 (2)C8—N1—Cu1110.98 (15)
C5—C6—C7118.5 (2)C1—O1—Cu1126.28 (16)
C1—C6—C7124.0 (2)C9—O2—Cu1114.80 (17)
N1—C7—C6121.7 (2)C11—O4—H4A109.5
N1—C7—C10121.3 (2)Cu1—O1W—H1WA109.5
C6—C7—C10116.9 (2)Cu1—O1W—H1WB127.5
N1—C8—C9110.2 (2)H1WA—O1W—H1WB109.1
N1—C8—C11111.0 (2)H2WA—O2W—H2WB121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.842.651 (3)171
O1W—H1WA···O2Wii0.821.912.694 (3)161
O1W—H1WB···O2iii0.851.922.740 (3)162
O2W—H2WA···O40.852.042.837 (3)156
O2W—H2WB···O1ii0.852.022.817 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C11H11NO4)(H2O)]·H2O
Mr320.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.6701 (9), 13.788 (2), 15.536 (2)
V3)1214.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.659, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
6314, 2149, 2038
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.09
No. of reflections2149
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 869 Friedel pairs
Absolute structure parameter0.011 (13)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.842.651 (3)170.9
O1W—H1WA···O2Wii0.821.912.694 (3)160.7
O1W—H1WB···O2iii0.851.922.740 (3)161.9
O2W—H2WA···O40.852.042.837 (3)155.7
O2W—H2WB···O1ii0.852.022.817 (3)156.6
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (grant No. 20877036) and High-Level Personnel Foundation of Pingdingshan University (grant No. 2009001).

References

First citationBasu Baul, T. S., Masharing, C., Ruisi, G., Jir ásko, R., HolǍpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds