organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Phenyl­ethyl)-1,3-thia­zinane-2-thione

aProvincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bHenan Sports School, Zhengzhou 450044, People's Republic of China
*Correspondence e-mail: yanfufeng@yahoo.cn

(Received 28 October 2009; accepted 3 November 2009; online 11 November 2009)

In the title mol­ecule, C12H15NS2, the 1,3-thia­zinane ring has a half-boat conformation; the C atom at position 5 deviates by 0.715 (2) Å from the mean plane (P) of the remaining five atoms. Plane P and the phenyl ring form a dihedral angle of 83.62 (3)°. In the crystal structure, weak inter­molecular C—H⋯S hydrogen bonds link mol­ecules related by translation along the axis a into chains.

Related literature

For the crystal structures of related thia­zinane derivatives, see: Kálmán et al. (1977[Kálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett. 48, 4241-4244.]); Peng & Wu (2009[Peng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.]); Amir et al. (2006[Amir, N., Motonishi, M., Fujita, M., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2006). Eur. J. Inorg. Chem. pp. 1041-1049.]). For the biological activity of thia­zinane-containing compounds, see: Soloway et al. (1978[Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene Heterocycles as Insecticides, in Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153-158. New York: Plenum Press.]); Tomizawa et al. (1995[Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci. 20, 49-56.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NS2

  • Mr = 237.37

  • Monoclinic, P 21 /n

  • a = 7.0169 (4) Å

  • b = 15.5107 (9) Å

  • c = 11.0349 (7) Å

  • β = 102.391 (3)°

  • V = 1173.03 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 113 K

  • 0.26 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.899, Tmax = 0.967

  • 14476 measured reflections

  • 2798 independent reflections

  • 2631 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.087

  • S = 1.13

  • 2798 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6C⋯S1i 0.98 2.76 3.7279 (17) 168
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Many compounds containing thiazinane groups possess a broad spectrum of biological activities (Soloway et al., 1978; Tomizawa et al., 1995). Herein we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are in a good agreement with those reported previously (Kálmán et al., 1977; Peng & Wu, 2009; Amir et al., 2006). The thiazinane ring shows a conformation near to a half boat with the carbon atom at position 5 (C3) deviating 0.715 (2) Å above the plane p1 formed by S2, N1, C1, C2 and C4 [maximum least squares plane deviation for S2 0.038 (3) Å]. The dihedral angle between the benzene ring C7-C12 and plane p1 is 83.62 (3) °. In the crystal structure, weak intermolecular C—H···S hydrogen bonds link molecules related by translation along axis a into chains.

Related literature top

For the crystal structures of related thiazinane derivatives, see: Kálmán et al. (1977); Peng & Wu (2009); Amir et al. (2006). For the biological activity of thiazinane-containing compounds, see: Soloway et al. (1978); Tomizawa et al. (1995).

Experimental top

A solution of 1,3-thiazinane-2-thione (1.33 g, 10 mmol) and sodium hydride (0.3 g) dissolved in anhydrous acetonitrile (20 ml), and dropwise added over a period of 10 min to a solution of 1-(1-chloroethyl)benzene (1.41g, 10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 2 h. The solvent was removed and the residue was purified by flash chromatography (3:1 Cyclohexane:Dichloromethane) to give title compound as a white solid (1.90 g, 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level.
3-(1-Phenylethyl)-1,3-thiazinane-2-thione top
Crystal data top
C12H15NS2F(000) = 504
Mr = 237.37Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 3792 reflections
a = 7.0169 (4) Åθ = 2.3–27.9°
b = 15.5107 (9) ŵ = 0.42 mm1
c = 11.0349 (7) ÅT = 113 K
β = 102.391 (3)°Prism, colourless
V = 1173.03 (12) Å30.26 × 0.10 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2798 independent reflections
Radiation source: rotating anode2631 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1920
Tmin = 0.899, Tmax = 0.967l = 1414
14476 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.034P)2 + 0.4071P]
where P = (Fo2 + 2Fc2)/3
2798 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H15NS2V = 1173.03 (12) Å3
Mr = 237.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0169 (4) ŵ = 0.42 mm1
b = 15.5107 (9) ÅT = 113 K
c = 11.0349 (7) Å0.26 × 0.10 × 0.08 mm
β = 102.391 (3)°
Data collection top
Rigaku Saturn
diffractometer
2798 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2631 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.967Rint = 0.040
14476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.13Δρmax = 0.27 e Å3
2798 reflectionsΔρmin = 0.32 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.23060 (6)0.17662 (3)0.70183 (4)0.03009 (13)
S21.02102 (6)0.13716 (3)0.45696 (4)0.02633 (12)
N10.86777 (18)0.11187 (8)0.65929 (12)0.0193 (3)
C11.0203 (2)0.13813 (10)0.61536 (15)0.0208 (3)
C20.6824 (2)0.08125 (10)0.58027 (14)0.0215 (3)
H2A0.57550.09050.62470.026*
H2B0.69230.01850.56630.026*
C30.6315 (2)0.12648 (10)0.45586 (15)0.0225 (3)
H3A0.49930.10880.41150.027*
H3B0.63020.18960.46900.027*
C40.7771 (2)0.10468 (11)0.37795 (15)0.0262 (4)
H4A0.74100.13460.29700.031*
H4B0.77490.04180.36210.031*
C50.8766 (2)0.11054 (10)0.79582 (14)0.0207 (3)
H51.01670.11760.83830.025*
C60.7662 (2)0.18756 (10)0.83194 (15)0.0245 (3)
H6A0.82770.24100.81240.037*
H6B0.76920.18540.92110.037*
H6C0.63050.18580.78550.037*
C70.8115 (2)0.02299 (10)0.83270 (14)0.0203 (3)
C80.9420 (3)0.04584 (11)0.84269 (15)0.0250 (4)
H81.06820.03660.82680.030*
C90.8901 (3)0.12754 (11)0.87548 (16)0.0316 (4)
H90.97960.17400.88040.038*
C100.7074 (3)0.14124 (11)0.90105 (16)0.0316 (4)
H100.67180.19700.92430.038*
C110.5777 (3)0.07356 (11)0.89258 (15)0.0283 (4)
H110.45280.08280.91050.034*
C120.6284 (2)0.00820 (10)0.85792 (14)0.0235 (3)
H120.53730.05420.85150.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0166 (2)0.0355 (3)0.0367 (3)0.00502 (17)0.00244 (18)0.00113 (19)
S20.0240 (2)0.0303 (2)0.0266 (2)0.00098 (17)0.00950 (17)0.00309 (17)
N10.0157 (6)0.0211 (6)0.0203 (6)0.0016 (5)0.0020 (5)0.0005 (5)
C10.0177 (7)0.0165 (7)0.0282 (8)0.0027 (6)0.0048 (6)0.0007 (6)
C20.0181 (7)0.0238 (8)0.0217 (8)0.0045 (6)0.0022 (6)0.0013 (6)
C30.0214 (8)0.0218 (8)0.0225 (8)0.0018 (6)0.0009 (6)0.0000 (6)
C40.0290 (9)0.0280 (9)0.0211 (8)0.0021 (7)0.0043 (7)0.0007 (7)
C50.0178 (7)0.0244 (8)0.0188 (7)0.0005 (6)0.0015 (6)0.0017 (6)
C60.0259 (8)0.0218 (8)0.0245 (8)0.0006 (7)0.0025 (7)0.0032 (6)
C70.0224 (8)0.0226 (8)0.0149 (7)0.0008 (6)0.0016 (6)0.0019 (6)
C80.0257 (8)0.0275 (8)0.0204 (8)0.0067 (7)0.0019 (6)0.0023 (6)
C90.0421 (11)0.0241 (8)0.0249 (8)0.0105 (8)0.0008 (8)0.0027 (7)
C100.0484 (11)0.0207 (8)0.0227 (8)0.0016 (8)0.0012 (8)0.0016 (7)
C110.0328 (9)0.0301 (9)0.0225 (8)0.0051 (7)0.0071 (7)0.0019 (7)
C120.0251 (8)0.0241 (8)0.0210 (8)0.0033 (7)0.0043 (6)0.0002 (6)
Geometric parameters (Å, º) top
S1—C11.6851 (16)C5—H51.0000
S2—C11.7491 (17)C6—H6A0.9800
S2—C41.8172 (17)C6—H6B0.9800
N1—C11.330 (2)C6—H6C0.9800
N1—C21.4803 (19)C7—C121.390 (2)
N1—C51.495 (2)C7—C81.395 (2)
C2—C31.515 (2)C8—C91.388 (2)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—C101.387 (3)
C3—C41.508 (2)C9—H90.9500
C3—H3A0.9900C10—C111.379 (3)
C3—H3B0.9900C10—H100.9500
C4—H4A0.9900C11—C121.393 (2)
C4—H4B0.9900C11—H110.9500
C5—C71.516 (2)C12—H120.9500
C5—C61.523 (2)
C1—S2—C4106.11 (8)N1—C5—H5107.2
C1—N1—C2123.90 (13)C7—C5—H5107.2
C1—N1—C5120.59 (13)C6—C5—H5107.2
C2—N1—C5115.50 (12)C5—C6—H6A109.5
N1—C1—S1125.27 (13)C5—C6—H6B109.5
N1—C1—S2122.45 (12)H6A—C6—H6B109.5
S1—C1—S2112.27 (9)C5—C6—H6C109.5
N1—C2—C3113.06 (13)H6A—C6—H6C109.5
N1—C2—H2A109.0H6B—C6—H6C109.5
C3—C2—H2A109.0C12—C7—C8118.47 (15)
N1—C2—H2B109.0C12—C7—C5123.11 (14)
C3—C2—H2B109.0C8—C7—C5118.42 (14)
H2A—C2—H2B107.8C9—C8—C7120.99 (16)
C4—C3—C2110.86 (13)C9—C8—H8119.5
C4—C3—H3A109.5C7—C8—H8119.5
C2—C3—H3A109.5C10—C9—C8119.90 (16)
C4—C3—H3B109.5C10—C9—H9120.0
C2—C3—H3B109.5C8—C9—H9120.0
H3A—C3—H3B108.1C11—C10—C9119.66 (16)
C3—C4—S2110.36 (11)C11—C10—H10120.2
C3—C4—H4A109.6C9—C10—H10120.2
S2—C4—H4A109.6C10—C11—C12120.52 (17)
C3—C4—H4B109.6C10—C11—H11119.7
S2—C4—H4B109.6C12—C11—H11119.7
H4A—C4—H4B108.1C7—C12—C11120.44 (15)
N1—C5—C7109.47 (12)C7—C12—H12119.8
N1—C5—C6109.85 (13)C11—C12—H12119.8
C7—C5—C6115.64 (13)
C2—N1—C1—S1177.75 (11)C2—N1—C5—C678.27 (16)
C5—N1—C1—S13.2 (2)N1—C5—C7—C12103.30 (16)
C2—N1—C1—S21.5 (2)C6—C5—C7—C1221.4 (2)
C5—N1—C1—S2177.55 (11)N1—C5—C7—C877.19 (17)
C4—S2—C1—N14.98 (15)C6—C5—C7—C8158.12 (14)
C4—S2—C1—S1174.33 (8)C12—C7—C8—C90.8 (2)
C1—N1—C2—C333.2 (2)C5—C7—C8—C9179.67 (15)
C5—N1—C2—C3147.72 (13)C7—C8—C9—C101.2 (3)
N1—C2—C3—C466.05 (17)C8—C9—C10—C110.6 (3)
C2—C3—C4—S259.48 (16)C9—C10—C11—C120.4 (3)
C1—S2—C4—C325.10 (14)C8—C7—C12—C110.2 (2)
C1—N1—C5—C7129.39 (14)C5—C7—C12—C11179.36 (15)
C2—N1—C5—C749.72 (17)C10—C11—C12—C70.7 (2)
C1—N1—C5—C6102.62 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···S1i0.982.763.7279 (17)168
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H15NS2
Mr237.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.0169 (4), 15.5107 (9), 11.0349 (7)
β (°) 102.391 (3)
V3)1173.03 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.26 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.899, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
14476, 2798, 2631
Rint0.040
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.087, 1.13
No. of reflections2798
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.32

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···S1i0.982.763.7279 (17)168.3
Symmetry code: (i) x1, y, z.
 

References

First citationAmir, N., Motonishi, M., Fujita, M., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2006). Eur. J. Inorg. Chem. pp. 1041–1049.  Web of Science CSD CrossRef Google Scholar
First citationKálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett. 48, 4241–4244.  Google Scholar
First citationPeng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene Heterocycles as Insecticides, in Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153–158. New York: Plenum Press.  Google Scholar
First citationTomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci. 20, 49–56.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds