metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{6,6-dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}copper(II) aceto­nitrile solvate

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: dzxfwang@yahoo.com.cn

(Received 30 October 2009; accepted 18 November 2009; online 21 November 2009)

In the title compound, [Cu(C19H20N2O4)(H2O)]·C2H3N, the CuII ion is coordinated by two N and two O atoms from the tetra­dentate Schiff base ligand, which contains a propyl­ene fragment disordered over two conformations in a 0.64 (1):0.36 (1) ratio, and one O atom from the water mol­ecule in a distorted square-pyramidal geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For related crystal structures, see: Nathan et al. (2003[Nathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887-894.]); Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]); Xing (2009[Xing, J. (2009). Acta Cryst. E65, m469.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H20N2O4)(H2O)]·C2H3N

  • Mr = 462.98

  • Monoclinic, P 21

  • a = 5.4003 (9) Å

  • b = 19.155 (4) Å

  • c = 10.3891 (18) Å

  • β = 98.862 (3)°

  • V = 1061.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 273 K

  • 0.15 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.910

  • 6127 measured reflections

  • 4000 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.03

  • 4000 reflections

  • 274 parameters

  • 1 restraint

  • .

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1570 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.33 3.055 (6) 148
O3—H3A⋯O5i 0.82 2.12 2.805 (6) 140
O3—H3B⋯O1i 0.82 2.53 3.048 (5) 122
O3—H3B⋯O4i 0.82 2.00 2.805 (6) 166
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our studies of tetradentate Shiff-base ligands and their complexes (Xing, 2009), we present here the title compound, (I).

In (I) (Fig. 1), the coordination sphere of the CuII ion can be described as a distorted square-pyramidal one, in which the four basal positions are occupied by two N atoms and two O atoms from the tetradentate Schiff-base ligand, and the fifth apical site is occupied by the O atom of the coordinated water molecule. The CuII ion is out of the plane formed by N2O2 unit at 0.102Å towards the Cu—OH2O bond. The average Cu—N, Cu—OSchiff base, and the Cu—Oaqua bond lengths are 2.017 (4), 1.956 (4) and 2.276 (4) Å, respectively, which are all in agreement with the corresponding distances found in others Schiff base complexes with Cu (Nathan, et al., 2003; Saha, et al., 2007; Xing, 2009).

Intermolecular O—H···O hydrogen bonds (Table 1) link molecules related by translation along axis a into chains.

Related literature top

For related crystal structures, see: Nathan et al. (2003); Saha et al. (2007); Xing (2009).

Experimental top

The Schiff base ligand was synthesized by condensation of propyl diamine and 3-methoxyl-2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The title complex was synthesized by reacting Cu(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in acetonitrile. The mixture was stirred for for about 10 min at room temperature, then filtered, and then the filtrate was allowed to slow evaporate undisturbed for ten days to afford blue crystals suitable for X-ray diffraction with a yield about 60%.

Refinement top

C-bound H atoms were geometrically positioned with C—H distances of 0.93, 0.96 and 0.97 Å, respectively, and were refined as riding, with Uiso(H) = 1.2Ueq(C). For the H atom of the water molecule, they were found from difference Fourier maps, but placed in idealized positions with O—H = 0.82 Å, and refined as riding, with Uiso(H) = 1.5Ueq(O). Thepropylene fragment was disordered between two conformations with the occupancies refined to 0.64 (1) and 0.36 (1), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only major part of the disordered atom C10 is shown. H-atoms are omitted for clarity.
Aqua{6,6-dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}copper(II) acetonitrile solvate top
Crystal data top
[Cu(C19H20N2O4)(H2O)]·C2H3NF(000) = 482
Mr = 462.98Dx = 1.448 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.4003 (9) ÅCell parameters from 1983 reflections
b = 19.155 (4) Åθ = 2.9–22.0°
c = 10.3891 (18) ŵ = 1.07 mm1
β = 98.862 (3)°T = 273 K
V = 1061.8 (3) Å3Block, green
Z = 20.15 × 0.13 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4000 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 67
Tmin = 0.857, Tmax = 0.910k = 1724
6127 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.061P)2 + 0.2306P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.40 e Å3
4000 reflectionsΔρmin = 0.58 e Å3
274 parametersAbsolute structure: Flack (1983), 1570 Friedel pairs
1 restraintAbsolute structure parameter: 0.00 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu(C19H20N2O4)(H2O)]·C2H3NV = 1061.8 (3) Å3
Mr = 462.98Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.4003 (9) ŵ = 1.07 mm1
b = 19.155 (4) ÅT = 273 K
c = 10.3891 (18) Å0.15 × 0.13 × 0.09 mm
β = 98.862 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4000 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3145 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.910Rint = 0.027
6127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.128Δρmax = 0.40 e Å3
S = 1.03Δρmin = 0.58 e Å3
4000 reflectionsAbsolute structure: Flack (1983), 1570 Friedel pairs
274 parametersAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.91053 (9)0.74577 (4)0.52909 (5)0.04410 (17)
N11.0195 (8)0.7458 (5)0.3513 (4)0.0637 (11)
N21.1012 (9)0.8326 (3)0.5920 (5)0.0580 (12)
O10.6757 (7)0.6700 (2)0.4746 (3)0.0532 (9)
O20.7350 (5)0.7475 (3)0.6805 (3)0.0516 (7)
O31.2273 (8)0.6746 (2)0.6203 (4)0.0565 (10)
H3B1.27520.64830.56670.06 (2)*
H3A1.34260.69500.66590.09 (3)*
O40.3574 (8)0.5659 (2)0.4627 (5)0.0743 (12)
O50.4665 (8)0.7216 (2)0.8637 (4)0.0733 (14)
C10.4793 (10)0.5744 (3)0.3569 (5)0.0539 (13)
C20.6506 (9)0.6313 (3)0.3692 (5)0.0481 (12)
C30.7817 (11)0.6420 (3)0.2649 (5)0.0573 (14)
C40.7478 (14)0.5969 (4)0.1560 (6)0.0737 (19)
H40.84110.60380.08890.088*
C50.5837 (14)0.5444 (4)0.1482 (6)0.0773 (19)
H50.56080.51600.07480.093*
C60.4434 (13)0.5316 (3)0.2509 (6)0.0653 (16)
H60.32970.49490.24580.078*
C70.9537 (11)0.6988 (4)0.2631 (5)0.0657 (16)
H71.02800.70250.18840.079*
C80.1745 (12)0.5122 (4)0.4587 (7)0.0771 (18)
H8A0.23160.47140.41840.116*
H8B0.01970.52790.40920.116*
H8C0.14880.50110.54580.116*
C91.2883 (16)0.8635 (5)0.5191 (8)0.0919 (16)0.355 (10)
H9A1.22330.90850.48710.110*0.355 (10)
H9B1.43740.87270.58170.110*0.355 (10)
C9'1.2883 (16)0.8635 (5)0.5191 (8)0.0919 (16)0.645 (10)
H9'11.44330.83730.53730.110*0.645 (10)
H9'21.32270.91120.54820.110*0.645 (10)
C101.365 (3)0.8290 (10)0.4150 (19)0.073 (3)0.355 (10)
H10A1.48800.79500.45310.088*0.355 (10)
H10B1.45630.86330.37200.088*0.355 (10)
C10A1.198 (2)0.8632 (5)0.3764 (10)0.073 (3)0.645 (10)
H10C1.02570.87920.36080.088*0.645 (10)
H10D1.29760.89600.33480.088*0.645 (10)
C111.2121 (15)0.7941 (5)0.3158 (7)0.0919 (16)0.355 (10)
H11A1.31950.76770.26690.110*0.355 (10)
H11B1.12710.82890.25720.110*0.355 (10)
C11'1.2121 (15)0.7941 (5)0.3158 (7)0.0919 (16)0.645 (10)
H11C1.37700.77430.34350.110*0.645 (10)
H11D1.18910.79930.22190.110*0.645 (10)
C121.0861 (11)0.8625 (3)0.7019 (6)0.0601 (14)
H121.19020.90100.72160.072*
C130.9337 (11)0.8453 (3)0.7972 (5)0.0549 (13)
C140.7679 (9)0.7890 (3)0.7800 (5)0.0481 (12)
C150.6222 (10)0.7774 (3)0.8845 (5)0.0575 (14)
C160.6491 (12)0.8209 (4)0.9914 (5)0.0717 (18)
H160.55290.81291.05680.086*
C170.8133 (16)0.8756 (4)1.0037 (6)0.086 (2)
H170.82630.90441.07650.103*
C180.9574 (14)0.8881 (4)0.9103 (6)0.0734 (17)
H181.07190.92460.92020.088*
C190.3062 (12)0.7070 (4)0.9568 (6)0.079 (2)
H19A0.19940.74640.96380.119*
H19B0.40550.69791.03990.119*
H19C0.20530.66680.92940.119*
N30.4416 (17)0.4878 (4)0.7839 (7)0.118 (3)
C200.7826 (12)0.5758 (4)0.7570 (7)0.0726 (17)
H20A0.79750.57910.66630.109*
H20B0.93940.56080.80540.109*
H20C0.73940.62070.78810.109*
C210.5916 (15)0.5266 (4)0.7737 (6)0.0719 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0424 (3)0.0463 (3)0.0456 (3)0.0022 (4)0.01310 (18)0.0013 (4)
N10.069 (2)0.077 (3)0.047 (2)0.014 (4)0.0168 (17)0.007 (4)
N20.060 (3)0.045 (3)0.071 (3)0.002 (2)0.017 (2)0.002 (2)
O10.0527 (19)0.061 (2)0.0478 (19)0.0123 (18)0.0157 (15)0.0158 (17)
O20.0521 (15)0.0582 (19)0.0477 (16)0.009 (3)0.0178 (12)0.016 (3)
O30.055 (2)0.056 (2)0.059 (2)0.008 (2)0.011 (2)0.006 (2)
O40.071 (3)0.070 (3)0.087 (3)0.025 (2)0.028 (2)0.027 (2)
O50.065 (2)0.107 (4)0.053 (2)0.016 (2)0.0255 (19)0.013 (2)
C10.053 (3)0.049 (3)0.058 (3)0.005 (2)0.000 (2)0.009 (2)
C20.041 (3)0.052 (3)0.051 (3)0.010 (2)0.005 (2)0.004 (2)
C30.068 (3)0.067 (4)0.037 (2)0.018 (3)0.009 (2)0.001 (2)
C40.093 (5)0.079 (5)0.049 (3)0.019 (4)0.013 (3)0.008 (3)
C50.105 (5)0.060 (4)0.064 (4)0.010 (4)0.003 (4)0.020 (3)
C60.069 (4)0.051 (4)0.073 (4)0.013 (3)0.001 (3)0.012 (3)
C70.069 (4)0.088 (5)0.044 (3)0.002 (3)0.023 (3)0.007 (3)
C80.067 (4)0.056 (4)0.109 (5)0.014 (3)0.017 (4)0.014 (4)
C90.101 (4)0.092 (4)0.091 (4)0.037 (3)0.039 (3)0.004 (3)
C9'0.101 (4)0.092 (4)0.091 (4)0.037 (3)0.039 (3)0.004 (3)
C100.075 (6)0.062 (6)0.089 (6)0.005 (4)0.031 (5)0.034 (5)
C10A0.075 (6)0.062 (6)0.089 (6)0.005 (4)0.031 (5)0.034 (5)
C110.101 (4)0.092 (4)0.091 (4)0.037 (3)0.039 (3)0.004 (3)
C11'0.101 (4)0.092 (4)0.091 (4)0.037 (3)0.039 (3)0.004 (3)
C120.065 (3)0.038 (3)0.075 (4)0.005 (3)0.006 (3)0.005 (3)
C130.062 (3)0.041 (3)0.059 (3)0.009 (3)0.000 (3)0.005 (2)
C140.045 (3)0.054 (3)0.044 (3)0.011 (2)0.004 (2)0.001 (2)
C150.050 (3)0.072 (4)0.050 (3)0.011 (3)0.006 (2)0.007 (2)
C160.076 (4)0.099 (6)0.040 (3)0.017 (4)0.010 (3)0.010 (3)
C170.124 (6)0.078 (5)0.054 (4)0.020 (5)0.004 (4)0.023 (3)
C180.101 (5)0.051 (4)0.065 (4)0.006 (4)0.001 (4)0.013 (3)
C190.068 (4)0.116 (6)0.058 (3)0.007 (4)0.026 (3)0.019 (4)
N30.153 (7)0.114 (7)0.096 (5)0.044 (6)0.046 (5)0.025 (5)
C200.081 (4)0.061 (4)0.079 (4)0.004 (3)0.024 (3)0.010 (3)
C210.109 (5)0.065 (4)0.047 (3)0.002 (4)0.031 (3)0.007 (3)
Geometric parameters (Å, º) top
Cu1—O11.954 (4)C8—H8C0.9600
Cu1—O21.958 (3)C9—C101.39 (2)
Cu1—N22.012 (5)C9—H9A0.9700
Cu1—N12.023 (4)C9—H9B0.9700
Cu1—O32.276 (4)C10—C111.39 (2)
N1—C71.294 (9)C10—H10A0.9700
N1—C111.480 (9)C10—H10B0.9700
N2—C121.292 (7)C10A—H10C0.9700
N2—C91.476 (8)C10A—H10D0.9700
O1—C21.311 (6)C11—H11A0.9700
O2—C141.294 (7)C11—H11B0.9700
O3—H3B0.8219C12—C131.420 (8)
O3—H3A0.8213C12—H120.9300
O4—C11.375 (6)C13—C141.396 (8)
O4—C81.421 (7)C13—C181.422 (8)
O5—C151.357 (7)C14—C151.453 (7)
O5—C191.422 (6)C15—C161.378 (9)
C1—C61.363 (8)C16—C171.365 (11)
C1—C21.422 (8)C16—H160.9300
C2—C31.399 (7)C17—C181.355 (9)
C3—C41.413 (8)C17—H170.9300
C3—C71.433 (9)C18—H180.9300
C4—C51.334 (10)C19—H19A0.9600
C4—H40.9300C19—H19B0.9600
C5—C61.422 (9)C19—H19C0.9600
C5—H50.9300N3—C211.117 (9)
C6—H60.9300C20—C211.428 (9)
C7—H70.9300C20—H20A0.9600
C8—H8A0.9600C20—H20B0.9600
C8—H8B0.9600C20—H20C0.9600
O1—Cu1—O282.67 (17)N2—C9—H9A107.0
O1—Cu1—N2170.30 (18)C10—C9—H9B107.0
O2—Cu1—N290.7 (2)N2—C9—H9B107.0
O1—Cu1—N190.2 (2)H9A—C9—H9B106.7
O2—Cu1—N1168.09 (15)C9—C10—C11126.4 (14)
N2—Cu1—N195.2 (3)C9—C10—H10A105.7
O1—Cu1—O395.05 (17)C11—C10—H10A105.7
O2—Cu1—O395.83 (17)C9—C10—H10B105.7
N2—Cu1—O392.6 (2)C11—C10—H10B105.7
N1—Cu1—O394.3 (2)H10A—C10—H10B106.2
C7—N1—C11112.6 (5)H10C—C10A—H10D107.7
C7—N1—Cu1124.0 (5)C10—C11—N1118.5 (8)
C11—N1—Cu1122.8 (5)C10—C11—H11A107.7
C12—N2—C9114.6 (6)N1—C11—H11A107.7
C12—N2—Cu1123.7 (4)C10—C11—H11B107.7
C9—N2—Cu1121.4 (4)N1—C11—H11B107.7
C2—O1—Cu1129.8 (3)H11A—C11—H11B107.1
C14—O2—Cu1129.0 (4)N2—C12—C13129.4 (6)
Cu1—O3—H3B112.4N2—C12—H12115.3
Cu1—O3—H3A114.2C13—C12—H12115.3
H3B—O3—H3A113.1C14—C13—C12121.4 (5)
C1—O4—C8118.6 (5)C14—C13—C18121.7 (6)
C15—O5—C19118.2 (5)C12—C13—C18117.0 (6)
C6—C1—O4123.3 (6)O2—C14—C13125.6 (5)
C6—C1—C2122.9 (6)O2—C14—C15118.7 (5)
O4—C1—C2113.8 (4)C13—C14—C15115.7 (5)
O1—C2—C3124.4 (5)O5—C15—C16126.3 (6)
O1—C2—C1119.3 (4)O5—C15—C14113.2 (5)
C3—C2—C1116.3 (5)C16—C15—C14120.5 (6)
C2—C3—C4120.8 (6)C17—C16—C15121.8 (6)
C2—C3—C7121.9 (5)C17—C16—H16119.1
C4—C3—C7117.3 (6)C15—C16—H16119.1
C5—C4—C3120.8 (6)C18—C17—C16120.3 (6)
C5—C4—H4119.6C18—C17—H17119.9
C3—C4—H4119.6C16—C17—H17119.9
C4—C5—C6120.7 (6)C17—C18—C13120.1 (7)
C4—C5—H5119.7C17—C18—H18119.9
C6—C5—H5119.6C13—C18—H18119.9
C1—C6—C5118.5 (7)O5—C19—H19A109.5
C1—C6—H6120.8O5—C19—H19B109.5
C5—C6—H6120.8H19A—C19—H19B109.5
N1—C7—C3128.8 (5)O5—C19—H19C109.5
N1—C7—H7115.6H19A—C19—H19C109.5
C3—C7—H7115.6H19B—C19—H19C109.5
O4—C8—H8A109.5C21—C20—H20A109.5
O4—C8—H8B109.5C21—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
O4—C8—H8C109.5C21—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C10—C9—N2121.3 (9)N3—C21—C20178.5 (8)
C10—C9—H9A107.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.333.055 (6)148
O3—H3A···O5i0.822.122.805 (6)140
O3—H3B···O1i0.822.533.048 (5)122
O3—H3B···O4i0.822.002.805 (6)166
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C19H20N2O4)(H2O)]·C2H3N
Mr462.98
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)5.4003 (9), 19.155 (4), 10.3891 (18)
β (°) 98.862 (3)
V3)1061.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.15 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.857, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
6127, 4000, 3145
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.03
No. of reflections4000
No. of parameters274
No. of restraints1
Δρmax, Δρmin (e Å3)0.40, 0.58
Absolute structureFlack (1983), 1570 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.333.055 (6)147.7
O3—H3A···O5i0.822.122.805 (6)140.4
O3—H3B···O1i0.822.533.048 (5)122.1
O3—H3B···O4i0.822.002.805 (6)165.7
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, J. (2009). Acta Cryst. E65, m469.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds