organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Bromo-2-chloro­phen­yl)(4-eth­oxy­phen­yl)methanone

aTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: zhao_guilong@126.com

(Received 31 October 2009; accepted 8 November 2009; online 14 November 2009)

In the title mol­ecule, C15H12BrClO2, the two benzene rings form a dihedral angle of 69.30 (3)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains propagating along the b axis.

Related literature

The title compound is an inter­mediate in the synthesis of Dapagliflozin, which exhibits strong biological activity, see Meng et al. (2008[Meng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145-1149.]). For reference structural data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrClO2

  • Mr = 339.61

  • Orthorhombic, P b c a

  • a = 9.5979 (19) Å

  • b = 12.951 (3) Å

  • c = 22.457 (5) Å

  • V = 2791.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 153 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: gaussian (XSCANS; Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.705

  • 17640 measured reflections

  • 2460 independent reflections

  • 2127 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.09

  • 2460 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.50 3.369 (3) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dapagliflozin is an anti-diabetic agent through the inhibition of renal SGLT2, which is developed by Bristol-Myers Squibb Company, and now it is in the phase III clinical trial (Meng et al., 2008). During the development of our own SGLT2 inhibitors as anti-diabetic agents, Dapagliflozin was synthesized as the positive control in the bioactivity screening, and the title compound, (I), was prepared as an intermediate. The crystallographic analysis of (I) confirms the molecular structures of the title compound and Dapagliflozin.

In (I) (Fig. 1), all bond lengths are normal and in a good agreement with those reported previously (Allen et al., 1987). Two benzene rings (C1—C6 and C8—C13) form a dihedral angle of 69.30 (3) °. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains along axis b.

Related literature top

The title compound is an intermediate in the synthesis of Dapagliflozin, which exhibits strong biological activity, see Meng et al. (2008). For reference structural data, see Allen et al. (1987).

Experimental top

A round-bottomed flask was charged with 2.36 g (10 mmol) of 5-bromo-2-chlorobenoic acid, 1 drop of DMF, 1.27 g (10 mmol) of oxalyl chloride and 3 ml of dried dichloromethane, and the mixture was stirred at room temperature over night until a clear solution formed. The reaction mixture was evaporated on a rotary evaporator to give crude 5-bromo-2-chlorobenzoic acid, which was dissolved in 15 ml of dried dichloromethane. The solution thus obtained was stirred while being cooled with an ice-salt mixture, and 1.22 g (10 mmol) of phenetole was added followed by addition of 1.60 g (12 mmol) of anhydrous aluminium chloride in a portionwise manner. The resulting mixture was stirred at this temperature for 1 h and poured into 150 ml of ice-water. The mixture thus formed was exacted with three 50-ml portions of dichloromethane, and the combined exacts were washed with saturated brine, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude title compound. Pure title compound was obtained by column chromatography (2.86 g 84.2%). Crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in dichloromethane/ethyl acetate/petroleum ether (2/1/3 by volume).

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
(5-Bromo-2-chlorophenyl)(4-ethoxyphenyl)methanone top
Crystal data top
C15H12BrClO2F(000) = 1360
Mr = 339.61Dx = 1.616 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7090 reflections
a = 9.5979 (19) Åθ = 2.6–27.9°
b = 12.951 (3) ŵ = 3.13 mm1
c = 22.457 (5) ÅT = 153 K
V = 2791.3 (10) Å3Block, colourless
Z = 80.22 × 0.18 × 0.12 mm
Data collection top
Bruker P4
diffractometer
2460 independent reflections
Radiation source: sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: gaussian
(XSCANS; Bruker, 1999)
h = 1110
Tmin = 0.546, Tmax = 0.705k = 1512
17640 measured reflectionsl = 2623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2837P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2460 reflectionsΔρmax = 0.56 e Å3
174 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (4)
Crystal data top
C15H12BrClO2V = 2791.3 (10) Å3
Mr = 339.61Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5979 (19) ŵ = 3.13 mm1
b = 12.951 (3) ÅT = 153 K
c = 22.457 (5) Å0.22 × 0.18 × 0.12 mm
Data collection top
Bruker P4
diffractometer
2460 independent reflections
Absorption correction: gaussian
(XSCANS; Bruker, 1999)
2127 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.705Rint = 0.043
17640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
2460 reflectionsΔρmin = 0.63 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.01219 (3)0.15934 (2)0.193829 (13)0.03274 (14)
Cl10.65219 (8)0.50193 (5)0.32750 (3)0.0359 (2)
O10.9357 (2)0.46850 (12)0.39989 (8)0.0332 (5)
O20.8726 (2)0.06639 (12)0.55900 (7)0.0302 (4)
C10.7603 (3)0.41473 (16)0.29098 (12)0.0241 (6)
C20.7414 (3)0.39945 (17)0.23067 (12)0.0270 (6)
H20.67650.43890.21000.032*
C30.8190 (3)0.32545 (18)0.20097 (11)0.0265 (6)
H30.80880.31620.16010.032*
C40.9117 (3)0.26556 (17)0.23294 (10)0.0252 (6)
C50.9313 (3)0.28109 (17)0.29345 (10)0.0243 (6)
H50.99400.23990.31430.029*
C60.8577 (3)0.35790 (17)0.32320 (11)0.0234 (6)
C70.8941 (3)0.38177 (18)0.38710 (11)0.0253 (6)
C80.8846 (3)0.29806 (17)0.43151 (10)0.0227 (6)
C90.8050 (3)0.20985 (17)0.42111 (11)0.0226 (6)
H90.75710.20370.38530.027*
C100.7954 (3)0.13140 (17)0.46257 (11)0.0232 (6)
H100.73990.07390.45520.028*
C110.8703 (3)0.13978 (17)0.51571 (10)0.0240 (6)
C120.9505 (3)0.22788 (19)0.52704 (11)0.0285 (6)
H121.00000.23350.56250.034*
C130.9559 (3)0.30605 (19)0.48567 (11)0.0273 (6)
H131.00770.36510.49380.033*
C140.7954 (3)0.02766 (17)0.54863 (12)0.0298 (6)
H14A0.82220.05810.51090.036*
H14B0.69620.01350.54770.036*
C150.8293 (3)0.1000 (2)0.59905 (12)0.0348 (7)
H15A0.92770.11350.59940.052*
H15B0.77960.16360.59380.052*
H15C0.80250.06890.63610.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0368 (2)0.0330 (2)0.0284 (2)0.00518 (11)0.01330 (12)0.00036 (11)
Cl10.0359 (5)0.0346 (4)0.0371 (4)0.0117 (3)0.0049 (3)0.0100 (3)
O10.0377 (13)0.0273 (9)0.0347 (11)0.0038 (8)0.0067 (9)0.0030 (8)
O20.0342 (12)0.0340 (9)0.0223 (9)0.0072 (8)0.0035 (8)0.0017 (8)
C10.0223 (15)0.0195 (12)0.0306 (14)0.0020 (10)0.0034 (11)0.0013 (10)
C20.0260 (16)0.0262 (13)0.0290 (14)0.0026 (11)0.0032 (11)0.0038 (11)
C30.0326 (17)0.0286 (13)0.0183 (13)0.0058 (11)0.0038 (11)0.0002 (10)
C40.0243 (16)0.0258 (12)0.0256 (13)0.0031 (11)0.0086 (12)0.0005 (10)
C50.0210 (16)0.0251 (13)0.0269 (13)0.0006 (11)0.0015 (11)0.0045 (10)
C60.0212 (15)0.0227 (12)0.0263 (13)0.0030 (10)0.0020 (11)0.0016 (10)
C70.0180 (15)0.0274 (13)0.0304 (14)0.0000 (11)0.0007 (12)0.0044 (11)
C80.0186 (15)0.0261 (12)0.0234 (13)0.0031 (10)0.0011 (11)0.0052 (10)
C90.0189 (15)0.0277 (13)0.0212 (13)0.0021 (10)0.0011 (10)0.0073 (10)
C100.0209 (15)0.0263 (12)0.0224 (13)0.0034 (10)0.0005 (11)0.0044 (10)
C110.0214 (16)0.0327 (13)0.0181 (13)0.0016 (11)0.0024 (11)0.0019 (11)
C120.0279 (16)0.0370 (15)0.0206 (13)0.0014 (12)0.0035 (12)0.0070 (11)
C130.0247 (16)0.0301 (13)0.0271 (14)0.0033 (11)0.0008 (12)0.0049 (11)
C140.0249 (17)0.0320 (13)0.0324 (15)0.0038 (11)0.0002 (12)0.0001 (11)
C150.0309 (18)0.0382 (15)0.0353 (16)0.0014 (12)0.0028 (13)0.0028 (12)
Geometric parameters (Å, º) top
Br1—C41.896 (2)C8—C91.394 (3)
Cl1—C11.739 (2)C8—C131.399 (3)
O1—C71.226 (3)C9—C101.381 (3)
O2—C111.360 (3)C9—H90.9300
O2—C141.444 (3)C10—C111.397 (3)
C1—C21.381 (4)C10—H100.9300
C1—C61.392 (4)C11—C121.400 (3)
C2—C31.385 (4)C12—C131.375 (4)
C2—H20.9300C12—H120.9300
C3—C41.382 (4)C13—H130.9300
C3—H30.9300C14—C151.505 (3)
C4—C51.386 (3)C14—H14A0.9700
C5—C61.391 (3)C14—H14B0.9700
C5—H50.9300C15—H15A0.9600
C6—C71.509 (3)C15—H15B0.9600
C7—C81.476 (3)C15—H15C0.9600
C11—O2—C14117.77 (19)C10—C9—H9119.1
C2—C1—C6121.5 (2)C8—C9—H9119.1
C2—C1—Cl1118.49 (19)C9—C10—C11119.0 (2)
C6—C1—Cl1119.9 (2)C9—C10—H10120.5
C1—C2—C3120.1 (2)C11—C10—H10120.5
C1—C2—H2120.0O2—C11—C10124.4 (2)
C3—C2—H2120.0O2—C11—C12115.5 (2)
C4—C3—C2119.0 (2)C10—C11—C12120.1 (2)
C4—C3—H3120.5C13—C12—C11119.9 (2)
C2—C3—H3120.5C13—C12—H12120.1
C3—C4—C5121.0 (2)C11—C12—H12120.1
C3—C4—Br1119.63 (18)C12—C13—C8121.0 (2)
C5—C4—Br1119.37 (19)C12—C13—H13119.5
C4—C5—C6120.4 (2)C8—C13—H13119.5
C4—C5—H5119.8O2—C14—C15107.0 (2)
C6—C5—H5119.8O2—C14—H14A110.3
C5—C6—C1118.0 (2)C15—C14—H14A110.3
C5—C6—C7119.1 (2)O2—C14—H14B110.3
C1—C6—C7122.8 (2)C15—C14—H14B110.3
O1—C7—C8122.3 (2)H14A—C14—H14B108.6
O1—C7—C6119.1 (2)C14—C15—H15A109.5
C8—C7—C6118.6 (2)C14—C15—H15B109.5
C9—C8—C13118.3 (2)H15A—C15—H15B109.5
C9—C8—C7121.5 (2)C14—C15—H15C109.5
C13—C8—C7120.2 (2)H15A—C15—H15C109.5
C10—C9—C8121.8 (2)H15B—C15—H15C109.5
C6—C1—C2—C30.7 (4)O1—C7—C8—C9163.0 (2)
Cl1—C1—C2—C3175.51 (19)C6—C7—C8—C920.0 (4)
C1—C2—C3—C42.0 (4)O1—C7—C8—C1316.7 (4)
C2—C3—C4—C52.3 (4)C6—C7—C8—C13160.3 (2)
C2—C3—C4—Br1176.92 (19)C13—C8—C9—C100.0 (4)
C3—C4—C5—C60.2 (4)C7—C8—C9—C10179.8 (2)
Br1—C4—C5—C6179.38 (19)C8—C9—C10—C111.6 (4)
C4—C5—C6—C12.9 (4)C14—O2—C11—C101.7 (4)
C4—C5—C6—C7172.4 (2)C14—O2—C11—C12177.9 (2)
C2—C1—C6—C53.2 (4)C9—C10—C11—O2177.9 (2)
Cl1—C1—C6—C5173.05 (19)C9—C10—C11—C121.7 (4)
C2—C1—C6—C7171.9 (2)O2—C11—C12—C13179.4 (2)
Cl1—C1—C6—C711.8 (3)C10—C11—C12—C130.2 (4)
C5—C6—C7—O1118.6 (3)C11—C12—C13—C81.4 (4)
C1—C6—C7—O156.4 (4)C9—C8—C13—C121.6 (4)
C5—C6—C7—C858.5 (3)C7—C8—C13—C12178.7 (2)
C1—C6—C7—C8126.5 (3)C11—O2—C14—C15173.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.503.369 (3)156
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H12BrClO2
Mr339.61
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)9.5979 (19), 12.951 (3), 22.457 (5)
V3)2791.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionGaussian
(XSCANS; Bruker, 1999)
Tmin, Tmax0.546, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
17640, 2460, 2127
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.09
No. of reflections2460
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.63

Computer programs: XSCANS (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.503.369 (3)155.7
Symmetry code: (i) x+3/2, y1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145–1149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds