metal-organic compounds
{μ2-1,4-Bis[2-(4-pyridyl)ethenyl]benzene-κ2N:N′}bis[bis(acetylacetonato-κ2O,O′)copper(II)]
aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.com
The 2(C5H7O2)4(C20H16N2)], contains half of a centrosymmetric dinuclear molecule. In the molecule, each Cu center is coordinated by four O atoms from two acetylacetonate ligands and one N atom from the bridging linear 1,4-bis[2-(4-pyridyl)ethenyl]benzene ligand in a square-pyramidal geometry. In the weak intermolecular C—H⋯O hydrogen bonds link molecules into sheets parallel to the bc plane.
of the title compound, [CuRelated literature
For coordination complexes with interesting topologies or properties, see: Ma et al. (2009); Liu et al. (2008). For long ligands, see: Banfi et al. (2002); Niu et al. (2001); Coe et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809048582/cv2655sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048582/cv2655Isup2.hkl
1,4-Bis(2-(4-pyridyl)ethenyl)benzene (2.84 g, 0.01 mol) and acetylacetonate copper(II) (5.23 g, 0.02 mol) in 2:1 molar ratio was dissolved in ethanol solution (40 ml) and refluxed for 2 h. After cooling and filtering, the blue block crystals were collected after 4 days (yield 42.35%).
All H atoms were positioned geometrically (C—H 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq of the parent atom.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C5H7O2)4(C20H16N2)] | F(000) = 840 |
Mr = 807.85 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1253 reflections |
a = 7.9584 (16) Å | θ = 1.9–25.0° |
b = 18.594 (4) Å | µ = 1.17 mm−1 |
c = 15.063 (4) Å | T = 293 K |
β = 120.97 (2)° | Block, blue |
V = 1911.2 (8) Å3 | 0.25 × 0.21 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3352 independent reflections |
Radiation source: fine-focus sealed tube | 2807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
phi and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −9→5 |
Tmin = 0.759, Tmax = 0.800 | k = −22→20 |
7784 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0573P)2 + 1.3432P] where P = (Fo2 + 2Fc2)/3 |
3352 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
[Cu2(C5H7O2)4(C20H16N2)] | V = 1911.2 (8) Å3 |
Mr = 807.85 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9584 (16) Å | µ = 1.17 mm−1 |
b = 18.594 (4) Å | T = 293 K |
c = 15.063 (4) Å | 0.25 × 0.21 × 0.20 mm |
β = 120.97 (2)° |
Bruker SMART CCD area-detector diffractometer | 3352 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2807 reflections with I > 2σ(I) |
Tmin = 0.759, Tmax = 0.800 | Rint = 0.022 |
7784 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.41 e Å−3 |
3352 reflections | Δρmin = −0.19 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.51253 (5) | −0.173135 (19) | −0.13916 (3) | 0.04299 (16) | |
O1 | 0.3204 (3) | −0.25040 (12) | −0.18542 (17) | 0.0531 (6) | |
O2 | 0.3110 (3) | −0.10340 (12) | −0.22282 (18) | 0.0586 (6) | |
O3 | 0.7113 (3) | −0.24740 (12) | −0.09329 (17) | 0.0564 (6) | |
O4 | 0.6960 (3) | −0.09862 (12) | −0.12417 (19) | 0.0604 (6) | |
N1 | 0.5307 (4) | −0.15375 (13) | 0.01154 (18) | 0.0414 (6) | |
C1 | 0.0211 (6) | −0.0532 (3) | −0.3578 (4) | 0.0995 (16) | |
H1A | 0.1015 | −0.0110 | −0.3323 | 0.149* | |
H1B | −0.0934 | −0.0470 | −0.3527 | 0.149* | |
H1C | −0.0177 | −0.0609 | −0.4288 | 0.149* | |
C2 | 0.1362 (5) | −0.1177 (2) | −0.2939 (3) | 0.0629 (9) | |
C3 | 0.0540 (5) | −0.1850 (2) | −0.3146 (3) | 0.0691 (11) | |
H3A | −0.0755 | −0.1890 | −0.3684 | 0.083* | |
C4 | 0.1463 (5) | −0.2471 (2) | −0.2628 (3) | 0.0579 (9) | |
C5 | 0.0410 (7) | −0.3181 (2) | −0.2979 (4) | 0.0868 (14) | |
H5A | 0.1251 | −0.3558 | −0.2540 | 0.130* | |
H5B | 0.0066 | −0.3271 | −0.3681 | 0.130* | |
H5C | −0.0757 | −0.3165 | −0.2942 | 0.130* | |
C6 | 0.9651 (7) | −0.0436 (3) | −0.1201 (4) | 0.1045 (17) | |
H6A | 0.8839 | −0.0022 | −0.1323 | 0.157* | |
H6B | 0.9885 | −0.0490 | −0.1763 | 0.157* | |
H6C | 1.0878 | −0.0374 | −0.0565 | 0.157* | |
C7 | 0.8632 (6) | −0.1098 (2) | −0.1128 (3) | 0.0648 (10) | |
C8 | 0.9518 (6) | −0.1755 (2) | −0.0957 (3) | 0.0747 (12) | |
H8A | 1.0737 | −0.1769 | −0.0901 | 0.090* | |
C9 | 0.8778 (5) | −0.2392 (2) | −0.0861 (3) | 0.0623 (10) | |
C10 | 0.9943 (7) | −0.3073 (3) | −0.0657 (4) | 0.0896 (14) | |
H10A | 0.9217 | −0.3470 | −0.0616 | 0.134* | |
H10B | 1.1167 | −0.3029 | −0.0015 | 0.134* | |
H10C | 1.0187 | −0.3154 | −0.1210 | 0.134* | |
C11 | 0.4967 (5) | −0.20205 (18) | 0.0647 (2) | 0.0505 (8) | |
H11A | 0.4738 | −0.2492 | 0.0409 | 0.061* | |
C12 | 0.4930 (5) | −0.18686 (17) | 0.1532 (2) | 0.0519 (8) | |
H12A | 0.4707 | −0.2235 | 0.1879 | 0.062* | |
C13 | 0.5224 (4) | −0.11714 (16) | 0.1905 (2) | 0.0434 (7) | |
C14 | 0.5614 (5) | −0.06650 (17) | 0.1356 (2) | 0.0514 (8) | |
H14A | 0.5842 | −0.0188 | 0.1573 | 0.062* | |
C15 | 0.5661 (5) | −0.08703 (17) | 0.0498 (2) | 0.0513 (8) | |
H15A | 0.5959 | −0.0522 | 0.0157 | 0.062* | |
C16 | 0.5141 (5) | −0.10005 (17) | 0.2825 (2) | 0.0488 (8) | |
H16A | 0.5061 | −0.1388 | 0.3192 | 0.059* | |
C17 | 0.5167 (5) | −0.03530 (16) | 0.3193 (2) | 0.0451 (7) | |
H17A | 0.5261 | 0.0034 | 0.2830 | 0.054* | |
C18 | 0.5065 (4) | −0.01843 (16) | 0.4102 (2) | 0.0420 (7) | |
C19 | 0.5343 (5) | 0.05182 (16) | 0.4469 (2) | 0.0501 (8) | |
H19A | 0.5577 | 0.0877 | 0.4115 | 0.060* | |
C20 | 0.4717 (5) | −0.07005 (17) | 0.4662 (2) | 0.0505 (8) | |
H20A | 0.4522 | −0.1177 | 0.4444 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0456 (2) | 0.0468 (2) | 0.0388 (2) | 0.00112 (16) | 0.02331 (18) | −0.00511 (16) |
O1 | 0.0523 (14) | 0.0536 (13) | 0.0514 (13) | −0.0059 (10) | 0.0252 (11) | −0.0089 (10) |
O2 | 0.0541 (15) | 0.0537 (14) | 0.0549 (14) | 0.0064 (11) | 0.0186 (12) | −0.0004 (11) |
O3 | 0.0531 (14) | 0.0571 (14) | 0.0565 (14) | 0.0087 (11) | 0.0263 (12) | −0.0045 (11) |
O4 | 0.0600 (15) | 0.0584 (14) | 0.0720 (16) | −0.0050 (11) | 0.0405 (13) | −0.0016 (12) |
N1 | 0.0477 (15) | 0.0439 (14) | 0.0347 (13) | 0.0026 (11) | 0.0226 (11) | −0.0037 (10) |
C1 | 0.073 (3) | 0.101 (4) | 0.094 (4) | 0.027 (3) | 0.021 (3) | 0.024 (3) |
C2 | 0.054 (2) | 0.080 (3) | 0.052 (2) | 0.0147 (19) | 0.0260 (18) | 0.0080 (18) |
C3 | 0.045 (2) | 0.093 (3) | 0.055 (2) | −0.006 (2) | 0.0155 (17) | 0.003 (2) |
C4 | 0.055 (2) | 0.077 (2) | 0.049 (2) | −0.0143 (18) | 0.0314 (18) | −0.0138 (18) |
C5 | 0.076 (3) | 0.094 (3) | 0.084 (3) | −0.035 (2) | 0.037 (3) | −0.021 (2) |
C6 | 0.088 (3) | 0.118 (4) | 0.122 (4) | −0.030 (3) | 0.065 (3) | 0.000 (3) |
C7 | 0.059 (2) | 0.089 (3) | 0.053 (2) | −0.012 (2) | 0.0331 (19) | −0.0033 (19) |
C8 | 0.050 (2) | 0.103 (3) | 0.078 (3) | 0.007 (2) | 0.038 (2) | 0.008 (2) |
C9 | 0.053 (2) | 0.089 (3) | 0.0406 (18) | 0.019 (2) | 0.0211 (17) | −0.0028 (18) |
C10 | 0.077 (3) | 0.110 (4) | 0.084 (3) | 0.037 (3) | 0.043 (3) | 0.008 (3) |
C11 | 0.064 (2) | 0.0442 (17) | 0.0515 (19) | −0.0086 (15) | 0.0354 (17) | −0.0137 (15) |
C12 | 0.076 (2) | 0.0423 (17) | 0.052 (2) | −0.0084 (15) | 0.0434 (19) | −0.0021 (14) |
C13 | 0.0547 (19) | 0.0422 (16) | 0.0375 (16) | 0.0041 (14) | 0.0269 (14) | −0.0002 (13) |
C14 | 0.083 (2) | 0.0383 (17) | 0.0457 (18) | 0.0030 (16) | 0.0419 (18) | −0.0020 (13) |
C15 | 0.076 (2) | 0.0444 (18) | 0.0431 (17) | 0.0049 (16) | 0.0371 (17) | 0.0047 (14) |
C16 | 0.071 (2) | 0.0450 (18) | 0.0416 (17) | 0.0018 (15) | 0.0368 (16) | 0.0023 (13) |
C17 | 0.061 (2) | 0.0444 (17) | 0.0392 (16) | 0.0014 (14) | 0.0329 (15) | 0.0028 (13) |
C18 | 0.0495 (18) | 0.0436 (16) | 0.0356 (15) | 0.0021 (13) | 0.0239 (14) | −0.0014 (13) |
C19 | 0.075 (2) | 0.0424 (17) | 0.0457 (18) | −0.0034 (15) | 0.0401 (17) | 0.0014 (13) |
C20 | 0.074 (2) | 0.0399 (17) | 0.0471 (18) | −0.0049 (15) | 0.0379 (17) | −0.0075 (14) |
Cu1—O2 | 1.939 (2) | C7—C8 | 1.367 (5) |
Cu1—O4 | 1.940 (2) | C8—C9 | 1.363 (6) |
Cu1—O3 | 1.940 (2) | C8—H8A | 0.9300 |
Cu1—O1 | 1.947 (2) | C9—C10 | 1.504 (5) |
Cu1—N1 | 2.228 (2) | C10—H10A | 0.9600 |
O1—C4 | 1.273 (4) | C10—H10B | 0.9600 |
O2—C2 | 1.273 (4) | C10—H10C | 0.9600 |
O3—C9 | 1.282 (4) | C11—C12 | 1.378 (4) |
O4—C7 | 1.269 (4) | C11—H11A | 0.9300 |
N1—C11 | 1.320 (4) | C12—C13 | 1.384 (4) |
N1—C15 | 1.335 (4) | C12—H12A | 0.9300 |
C1—C2 | 1.515 (5) | C13—C14 | 1.389 (4) |
C1—H1A | 0.9600 | C13—C16 | 1.456 (4) |
C1—H1B | 0.9600 | C14—C15 | 1.368 (4) |
C1—H1C | 0.9600 | C14—H14A | 0.9300 |
C2—C3 | 1.371 (5) | C15—H15A | 0.9300 |
C3—C4 | 1.376 (5) | C16—C17 | 1.321 (4) |
C3—H3A | 0.9300 | C16—H16A | 0.9300 |
C4—C5 | 1.505 (5) | C17—C18 | 1.448 (4) |
C5—H5A | 0.9600 | C17—H17A | 0.9300 |
C5—H5B | 0.9600 | C18—C19 | 1.391 (4) |
C5—H5C | 0.9600 | C18—C20 | 1.397 (4) |
C6—C7 | 1.511 (6) | C19—C20i | 1.376 (4) |
C6—H6A | 0.9600 | C19—H19A | 0.9300 |
C6—H6B | 0.9600 | C20—C19i | 1.376 (4) |
C6—H6C | 0.9600 | C20—H20A | 0.9300 |
O2—Cu1—O4 | 85.37 (10) | O4—C7—C6 | 114.9 (4) |
O2—Cu1—O3 | 163.25 (10) | C8—C7—C6 | 119.9 (4) |
O4—Cu1—O3 | 92.29 (11) | C9—C8—C7 | 125.9 (4) |
O2—Cu1—O1 | 91.51 (10) | C9—C8—H8A | 117.0 |
O4—Cu1—O1 | 166.93 (10) | C7—C8—H8A | 117.0 |
O3—Cu1—O1 | 87.05 (10) | O3—C9—C8 | 125.4 (3) |
O2—Cu1—N1 | 98.77 (10) | O3—C9—C10 | 114.7 (4) |
O4—Cu1—N1 | 96.62 (10) | C8—C9—C10 | 119.9 (4) |
O3—Cu1—N1 | 97.98 (9) | C9—C10—H10A | 109.5 |
O1—Cu1—N1 | 96.40 (9) | C9—C10—H10B | 109.5 |
C4—O1—Cu1 | 125.2 (2) | H10A—C10—H10B | 109.5 |
C2—O2—Cu1 | 125.9 (2) | C9—C10—H10C | 109.5 |
C9—O3—Cu1 | 124.3 (2) | H10A—C10—H10C | 109.5 |
C7—O4—Cu1 | 124.9 (2) | H10B—C10—H10C | 109.5 |
C11—N1—C15 | 115.7 (3) | N1—C11—C12 | 124.1 (3) |
C11—N1—Cu1 | 125.5 (2) | N1—C11—H11A | 118.0 |
C15—N1—Cu1 | 118.6 (2) | C12—C11—H11A | 118.0 |
C2—C1—H1A | 109.5 | C11—C12—C13 | 120.1 (3) |
C2—C1—H1B | 109.5 | C11—C12—H12A | 120.0 |
H1A—C1—H1B | 109.5 | C13—C12—H12A | 120.0 |
C2—C1—H1C | 109.5 | C12—C13—C14 | 115.9 (3) |
H1A—C1—H1C | 109.5 | C12—C13—C16 | 120.6 (3) |
H1B—C1—H1C | 109.5 | C14—C13—C16 | 123.5 (3) |
O2—C2—C3 | 124.7 (3) | C15—C14—C13 | 119.8 (3) |
O2—C2—C1 | 114.2 (4) | C15—C14—H14A | 120.1 |
C3—C2—C1 | 121.1 (4) | C13—C14—H14A | 120.1 |
C2—C3—C4 | 125.7 (3) | N1—C15—C14 | 124.4 (3) |
C2—C3—H3A | 117.1 | N1—C15—H15A | 117.8 |
C4—C3—H3A | 117.1 | C14—C15—H15A | 117.8 |
O1—C4—C3 | 124.8 (3) | C17—C16—C13 | 126.8 (3) |
O1—C4—C5 | 115.3 (3) | C17—C16—H16A | 116.6 |
C3—C4—C5 | 119.9 (3) | C13—C16—H16A | 116.6 |
C4—C5—H5A | 109.5 | C16—C17—C18 | 126.7 (3) |
C4—C5—H5B | 109.5 | C16—C17—H17A | 116.6 |
H5A—C5—H5B | 109.5 | C18—C17—H17A | 116.6 |
C4—C5—H5C | 109.5 | C19—C18—C20 | 116.5 (3) |
H5A—C5—H5C | 109.5 | C19—C18—C17 | 120.3 (3) |
H5B—C5—H5C | 109.5 | C20—C18—C17 | 123.2 (3) |
C7—C6—H6A | 109.5 | C20i—C19—C18 | 122.2 (3) |
C7—C6—H6B | 109.5 | C20i—C19—H19A | 118.9 |
H6A—C6—H6B | 109.5 | C18—C19—H19A | 118.9 |
C7—C6—H6C | 109.5 | C19i—C20—C18 | 121.3 (3) |
H6A—C6—H6C | 109.5 | C19i—C20—H20A | 119.3 |
H6B—C6—H6C | 109.5 | C18—C20—H20A | 119.3 |
O4—C7—C8 | 125.2 (4) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O2ii | 0.93 | 2.45 | 3.371 (4) | 173 |
C16—H16A···O1iii | 0.93 | 2.52 | 3.333 (4) | 147 |
C16—H16A···O3iii | 0.93 | 2.58 | 3.315 (4) | 136 |
Symmetry codes: (ii) −x+1, −y, −z; (iii) x, −y−1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C5H7O2)4(C20H16N2)] |
Mr | 807.85 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.9584 (16), 18.594 (4), 15.063 (4) |
β (°) | 120.97 (2) |
V (Å3) | 1911.2 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.25 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.759, 0.800 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7784, 3352, 2807 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.113, 0.99 |
No. of reflections | 3352 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.19 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O2i | 0.93 | 2.45 | 3.371 (4) | 172.6 |
C16—H16A···O1ii | 0.93 | 2.52 | 3.333 (4) | 146.8 |
C16—H16A···O3ii | 0.93 | 2.58 | 3.315 (4) | 136.0 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y−1/2, z+1/2. |
Acknowledgements
This work was supported financially by the Doctoral Fund of Shandaong Province (No. 2007BS04046).
References
Banfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 2714–2721. Web of Science CSD CrossRef Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coe, B. J., Harries, J. L., Harris, J. A., Brunschwig, B. S., Horton, P. N. & Hursthouse, M. B. (2006). Inorg. Chem. 45, 11019–11029. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, P. P., Cheng, A. L., Yue, Q., Liu, N., Sun, W. W. & Gao, E. Q. (2008). Cryst. Growth Des. 8, 1668–1674. Web of Science CrossRef CAS Google Scholar
Ma, Y., Cheng, A. L., Zhang, J. Y., Yue, Q. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 867–873. Web of Science CSD CrossRef CAS Google Scholar
Niu, Y. Y., Hou, H. W., Wei, Y. L., Fan, Y. T., Zhu, Y., Du, C. X. & Xin, X. Q. (2001). Inorg. Chem. Commun. 4, 358–361. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal ions and organic ligands are considered as the most important factors for designing the coordination networks (Ma et al., 2009). Up to now, it is still a challenge to predict the exact structure and understand the roles of both factors in crystal engineering. The flexible bridging ligands can afford different conformation with interesting topologies or properties (Liu et al., 2008). Among the others, long bis(pyridyl) ligands are used to construct the connectivity and geometry with different coordination sites metal ions, and often lead to interesting structural motifs (Ma et al., 2009). A large number of examples of particularly long ligands - 1,4-phenylenebis(4-pyridylmethanone), bis(4-pyridyl)terephthalate (Banfi et al., 2002), N,N'-bis(4-pyridylmethyl)piperazine (Niu et al., 2001), N-phenyl-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Coe et al., 2006), have been adopted for the self-assembly of coordination polymers, such as one-dimensional coordination chains, double helices, two dimensional layered structures, interpenetrated ladders, interpenetrated frameworks and so on (Banfi et al., 2002). Herein, we present the shoulder-pole coordination compound based on 1,4-bis(2-(4-pyridyl)ethenyl)benzole (bpyph) ligand, and describe its crystal structure.
In the title structure (Fig. 1),each Cu center is coordinated by four O atoms and one N atom from the bpyph ligand in a distorted pyramidal geometry. The linear bpyph ligand links two acetylacetonate copper(II) by Cu—N bonds, displaying the shoulder-pole model. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into sheets parallel to bc plane.