metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ2-1,4-Bis[2-(4-pyrid­yl)ethen­yl]benzene-κ2N:N′}bis­­[bis­­(acetyl­acetonato-κ2O,O′)copper(II)]

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.com

(Received 5 November 2009; accepted 16 November 2009; online 21 November 2009)

The asymmetric unit of the title compound, [Cu2(C5H7O2)4(C20H16N2)], contains half of a centrosymmetric dinuclear mol­ecule. In the mol­ecule, each Cu center is coordinated by four O atoms from two acetyl­acetonate ligands and one N atom from the bridging linear 1,4-bis­[2-(4-pyrid­yl)ethen­yl]benzene ligand in a square-pyramidal geometry. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into sheets parallel to the bc plane.

Related literature

For coordination complexes with inter­esting topologies or properties, see: Ma et al. (2009[Ma, Y., Cheng, A. L., Zhang, J. Y., Yue, Q. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 867-873.]); Liu et al. (2008[Liu, P. P., Cheng, A. L., Yue, Q., Liu, N., Sun, W. W. & Gao, E. Q. (2008). Cryst. Growth Des. 8, 1668-1674.]). For long ligands, see: Banfi et al. (2002[Banfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 2714-2721.]); Niu et al. (2001[Niu, Y. Y., Hou, H. W., Wei, Y. L., Fan, Y. T., Zhu, Y., Du, C. X. & Xin, X. Q. (2001). Inorg. Chem. Commun. 4, 358-361.]); Coe et al. (2006[Coe, B. J., Harries, J. L., Harris, J. A., Brunschwig, B. S., Horton, P. N. & Hursthouse, M. B. (2006). Inorg. Chem. 45, 11019-11029.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5H7O2)4(C20H16N2)]

  • Mr = 807.85

  • Monoclinic, P 21 /c

  • a = 7.9584 (16) Å

  • b = 18.594 (4) Å

  • c = 15.063 (4) Å

  • β = 120.97 (2)°

  • V = 1911.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.759, Tmax = 0.800

  • 7784 measured reflections

  • 3352 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 0.99

  • 3352 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.93 2.45 3.371 (4) 173
C16—H16A⋯O1ii 0.93 2.52 3.333 (4) 147
C16—H16A⋯O3ii 0.93 2.58 3.315 (4) 136
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal ions and organic ligands are considered as the most important factors for designing the coordination networks (Ma et al., 2009). Up to now, it is still a challenge to predict the exact structure and understand the roles of both factors in crystal engineering. The flexible bridging ligands can afford different conformation with interesting topologies or properties (Liu et al., 2008). Among the others, long bis(pyridyl) ligands are used to construct the connectivity and geometry with different coordination sites metal ions, and often lead to interesting structural motifs (Ma et al., 2009). A large number of examples of particularly long ligands - 1,4-phenylenebis(4-pyridylmethanone), bis(4-pyridyl)terephthalate (Banfi et al., 2002), N,N'-bis(4-pyridylmethyl)piperazine (Niu et al., 2001), N-phenyl-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Coe et al., 2006), have been adopted for the self-assembly of coordination polymers, such as one-dimensional coordination chains, double helices, two dimensional layered structures, interpenetrated ladders, interpenetrated frameworks and so on (Banfi et al., 2002). Herein, we present the shoulder-pole coordination compound based on 1,4-bis(2-(4-pyridyl)ethenyl)benzole (bpyph) ligand, and describe its crystal structure.

In the title structure (Fig. 1),each Cu center is coordinated by four O atoms and one N atom from the bpyph ligand in a distorted pyramidal geometry. The linear bpyph ligand links two acetylacetonate copper(II) by Cu—N bonds, displaying the shoulder-pole model. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into sheets parallel to bc plane.

Related literature top

For coordination complexes with interesting topologies or properties, see: Ma et al. (2009); Liu et al. (2008). For long ligands, see: Banfi et al. (2002); Niu et al. (2001); Coe et al. (2006).

Experimental top

1,4-Bis(2-(4-pyridyl)ethenyl)benzene (2.84 g, 0.01 mol) and acetylacetonate copper(II) (5.23 g, 0.02 mol) in 2:1 molar ratio was dissolved in ethanol solution (40 ml) and refluxed for 2 h. After cooling and filtering, the blue block crystals were collected after 4 days (yield 42.35%).

Refinement top

All H atoms were positioned geometrically (C—H 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme [symmetry code: (A) 1-x, -y, 1-z]. H atoms omited for clarity. Displacement ellipsoids are drawn at the 30% probability level.
2-1,4-Bis[2-(4-pyridyl)ethenyl]benzene- κ2N:N'}bis[bis(acetylacetonato- κ2O,O')copper(II)] top
Crystal data top
[Cu2(C5H7O2)4(C20H16N2)]F(000) = 840
Mr = 807.85Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1253 reflections
a = 7.9584 (16) Åθ = 1.9–25.0°
b = 18.594 (4) ŵ = 1.17 mm1
c = 15.063 (4) ÅT = 293 K
β = 120.97 (2)°Block, blue
V = 1911.2 (8) Å30.25 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3352 independent reflections
Radiation source: fine-focus sealed tube2807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 95
Tmin = 0.759, Tmax = 0.800k = 2220
7784 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.3432P]
where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Cu2(C5H7O2)4(C20H16N2)]V = 1911.2 (8) Å3
Mr = 807.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9584 (16) ŵ = 1.17 mm1
b = 18.594 (4) ÅT = 293 K
c = 15.063 (4) Å0.25 × 0.21 × 0.20 mm
β = 120.97 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2807 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.800Rint = 0.022
7784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.99Δρmax = 0.41 e Å3
3352 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51253 (5)0.173135 (19)0.13916 (3)0.04299 (16)
O10.3204 (3)0.25040 (12)0.18542 (17)0.0531 (6)
O20.3110 (3)0.10340 (12)0.22282 (18)0.0586 (6)
O30.7113 (3)0.24740 (12)0.09329 (17)0.0564 (6)
O40.6960 (3)0.09862 (12)0.12417 (19)0.0604 (6)
N10.5307 (4)0.15375 (13)0.01154 (18)0.0414 (6)
C10.0211 (6)0.0532 (3)0.3578 (4)0.0995 (16)
H1A0.10150.01100.33230.149*
H1B0.09340.04700.35270.149*
H1C0.01770.06090.42880.149*
C20.1362 (5)0.1177 (2)0.2939 (3)0.0629 (9)
C30.0540 (5)0.1850 (2)0.3146 (3)0.0691 (11)
H3A0.07550.18900.36840.083*
C40.1463 (5)0.2471 (2)0.2628 (3)0.0579 (9)
C50.0410 (7)0.3181 (2)0.2979 (4)0.0868 (14)
H5A0.12510.35580.25400.130*
H5B0.00660.32710.36810.130*
H5C0.07570.31650.29420.130*
C60.9651 (7)0.0436 (3)0.1201 (4)0.1045 (17)
H6A0.88390.00220.13230.157*
H6B0.98850.04900.17630.157*
H6C1.08780.03740.05650.157*
C70.8632 (6)0.1098 (2)0.1128 (3)0.0648 (10)
C80.9518 (6)0.1755 (2)0.0957 (3)0.0747 (12)
H8A1.07370.17690.09010.090*
C90.8778 (5)0.2392 (2)0.0861 (3)0.0623 (10)
C100.9943 (7)0.3073 (3)0.0657 (4)0.0896 (14)
H10A0.92170.34700.06160.134*
H10B1.11670.30290.00150.134*
H10C1.01870.31540.12100.134*
C110.4967 (5)0.20205 (18)0.0647 (2)0.0505 (8)
H11A0.47380.24920.04090.061*
C120.4930 (5)0.18686 (17)0.1532 (2)0.0519 (8)
H12A0.47070.22350.18790.062*
C130.5224 (4)0.11714 (16)0.1905 (2)0.0434 (7)
C140.5614 (5)0.06650 (17)0.1356 (2)0.0514 (8)
H14A0.58420.01880.15730.062*
C150.5661 (5)0.08703 (17)0.0498 (2)0.0513 (8)
H15A0.59590.05220.01570.062*
C160.5141 (5)0.10005 (17)0.2825 (2)0.0488 (8)
H16A0.50610.13880.31920.059*
C170.5167 (5)0.03530 (16)0.3193 (2)0.0451 (7)
H17A0.52610.00340.28300.054*
C180.5065 (4)0.01843 (16)0.4102 (2)0.0420 (7)
C190.5343 (5)0.05182 (16)0.4469 (2)0.0501 (8)
H19A0.55770.08770.41150.060*
C200.4717 (5)0.07005 (17)0.4662 (2)0.0505 (8)
H20A0.45220.11770.44440.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0456 (2)0.0468 (2)0.0388 (2)0.00112 (16)0.02331 (18)0.00511 (16)
O10.0523 (14)0.0536 (13)0.0514 (13)0.0059 (10)0.0252 (11)0.0089 (10)
O20.0541 (15)0.0537 (14)0.0549 (14)0.0064 (11)0.0186 (12)0.0004 (11)
O30.0531 (14)0.0571 (14)0.0565 (14)0.0087 (11)0.0263 (12)0.0045 (11)
O40.0600 (15)0.0584 (14)0.0720 (16)0.0050 (11)0.0405 (13)0.0016 (12)
N10.0477 (15)0.0439 (14)0.0347 (13)0.0026 (11)0.0226 (11)0.0037 (10)
C10.073 (3)0.101 (4)0.094 (4)0.027 (3)0.021 (3)0.024 (3)
C20.054 (2)0.080 (3)0.052 (2)0.0147 (19)0.0260 (18)0.0080 (18)
C30.045 (2)0.093 (3)0.055 (2)0.006 (2)0.0155 (17)0.003 (2)
C40.055 (2)0.077 (2)0.049 (2)0.0143 (18)0.0314 (18)0.0138 (18)
C50.076 (3)0.094 (3)0.084 (3)0.035 (2)0.037 (3)0.021 (2)
C60.088 (3)0.118 (4)0.122 (4)0.030 (3)0.065 (3)0.000 (3)
C70.059 (2)0.089 (3)0.053 (2)0.012 (2)0.0331 (19)0.0033 (19)
C80.050 (2)0.103 (3)0.078 (3)0.007 (2)0.038 (2)0.008 (2)
C90.053 (2)0.089 (3)0.0406 (18)0.019 (2)0.0211 (17)0.0028 (18)
C100.077 (3)0.110 (4)0.084 (3)0.037 (3)0.043 (3)0.008 (3)
C110.064 (2)0.0442 (17)0.0515 (19)0.0086 (15)0.0354 (17)0.0137 (15)
C120.076 (2)0.0423 (17)0.052 (2)0.0084 (15)0.0434 (19)0.0021 (14)
C130.0547 (19)0.0422 (16)0.0375 (16)0.0041 (14)0.0269 (14)0.0002 (13)
C140.083 (2)0.0383 (17)0.0457 (18)0.0030 (16)0.0419 (18)0.0020 (13)
C150.076 (2)0.0444 (18)0.0431 (17)0.0049 (16)0.0371 (17)0.0047 (14)
C160.071 (2)0.0450 (18)0.0416 (17)0.0018 (15)0.0368 (16)0.0023 (13)
C170.061 (2)0.0444 (17)0.0392 (16)0.0014 (14)0.0329 (15)0.0028 (13)
C180.0495 (18)0.0436 (16)0.0356 (15)0.0021 (13)0.0239 (14)0.0014 (13)
C190.075 (2)0.0424 (17)0.0457 (18)0.0034 (15)0.0401 (17)0.0014 (13)
C200.074 (2)0.0399 (17)0.0471 (18)0.0049 (15)0.0379 (17)0.0075 (14)
Geometric parameters (Å, º) top
Cu1—O21.939 (2)C7—C81.367 (5)
Cu1—O41.940 (2)C8—C91.363 (6)
Cu1—O31.940 (2)C8—H8A0.9300
Cu1—O11.947 (2)C9—C101.504 (5)
Cu1—N12.228 (2)C10—H10A0.9600
O1—C41.273 (4)C10—H10B0.9600
O2—C21.273 (4)C10—H10C0.9600
O3—C91.282 (4)C11—C121.378 (4)
O4—C71.269 (4)C11—H11A0.9300
N1—C111.320 (4)C12—C131.384 (4)
N1—C151.335 (4)C12—H12A0.9300
C1—C21.515 (5)C13—C141.389 (4)
C1—H1A0.9600C13—C161.456 (4)
C1—H1B0.9600C14—C151.368 (4)
C1—H1C0.9600C14—H14A0.9300
C2—C31.371 (5)C15—H15A0.9300
C3—C41.376 (5)C16—C171.321 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.505 (5)C17—C181.448 (4)
C5—H5A0.9600C17—H17A0.9300
C5—H5B0.9600C18—C191.391 (4)
C5—H5C0.9600C18—C201.397 (4)
C6—C71.511 (6)C19—C20i1.376 (4)
C6—H6A0.9600C19—H19A0.9300
C6—H6B0.9600C20—C19i1.376 (4)
C6—H6C0.9600C20—H20A0.9300
O2—Cu1—O485.37 (10)O4—C7—C6114.9 (4)
O2—Cu1—O3163.25 (10)C8—C7—C6119.9 (4)
O4—Cu1—O392.29 (11)C9—C8—C7125.9 (4)
O2—Cu1—O191.51 (10)C9—C8—H8A117.0
O4—Cu1—O1166.93 (10)C7—C8—H8A117.0
O3—Cu1—O187.05 (10)O3—C9—C8125.4 (3)
O2—Cu1—N198.77 (10)O3—C9—C10114.7 (4)
O4—Cu1—N196.62 (10)C8—C9—C10119.9 (4)
O3—Cu1—N197.98 (9)C9—C10—H10A109.5
O1—Cu1—N196.40 (9)C9—C10—H10B109.5
C4—O1—Cu1125.2 (2)H10A—C10—H10B109.5
C2—O2—Cu1125.9 (2)C9—C10—H10C109.5
C9—O3—Cu1124.3 (2)H10A—C10—H10C109.5
C7—O4—Cu1124.9 (2)H10B—C10—H10C109.5
C11—N1—C15115.7 (3)N1—C11—C12124.1 (3)
C11—N1—Cu1125.5 (2)N1—C11—H11A118.0
C15—N1—Cu1118.6 (2)C12—C11—H11A118.0
C2—C1—H1A109.5C11—C12—C13120.1 (3)
C2—C1—H1B109.5C11—C12—H12A120.0
H1A—C1—H1B109.5C13—C12—H12A120.0
C2—C1—H1C109.5C12—C13—C14115.9 (3)
H1A—C1—H1C109.5C12—C13—C16120.6 (3)
H1B—C1—H1C109.5C14—C13—C16123.5 (3)
O2—C2—C3124.7 (3)C15—C14—C13119.8 (3)
O2—C2—C1114.2 (4)C15—C14—H14A120.1
C3—C2—C1121.1 (4)C13—C14—H14A120.1
C2—C3—C4125.7 (3)N1—C15—C14124.4 (3)
C2—C3—H3A117.1N1—C15—H15A117.8
C4—C3—H3A117.1C14—C15—H15A117.8
O1—C4—C3124.8 (3)C17—C16—C13126.8 (3)
O1—C4—C5115.3 (3)C17—C16—H16A116.6
C3—C4—C5119.9 (3)C13—C16—H16A116.6
C4—C5—H5A109.5C16—C17—C18126.7 (3)
C4—C5—H5B109.5C16—C17—H17A116.6
H5A—C5—H5B109.5C18—C17—H17A116.6
C4—C5—H5C109.5C19—C18—C20116.5 (3)
H5A—C5—H5C109.5C19—C18—C17120.3 (3)
H5B—C5—H5C109.5C20—C18—C17123.2 (3)
C7—C6—H6A109.5C20i—C19—C18122.2 (3)
C7—C6—H6B109.5C20i—C19—H19A118.9
H6A—C6—H6B109.5C18—C19—H19A118.9
C7—C6—H6C109.5C19i—C20—C18121.3 (3)
H6A—C6—H6C109.5C19i—C20—H20A119.3
H6B—C6—H6C109.5C18—C20—H20A119.3
O4—C7—C8125.2 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2ii0.932.453.371 (4)173
C16—H16A···O1iii0.932.523.333 (4)147
C16—H16A···O3iii0.932.583.315 (4)136
Symmetry codes: (ii) x+1, y, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C5H7O2)4(C20H16N2)]
Mr807.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9584 (16), 18.594 (4), 15.063 (4)
β (°) 120.97 (2)
V3)1911.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.25 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.759, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
7784, 3352, 2807
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 0.99
No. of reflections3352
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.453.371 (4)172.6
C16—H16A···O1ii0.932.523.333 (4)146.8
C16—H16A···O3ii0.932.583.315 (4)136.0
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Doctoral Fund of Shandaong Province (No. 2007BS04046).

References

First citationBanfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 2714–2721.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J., Harries, J. L., Harris, J. A., Brunschwig, B. S., Horton, P. N. & Hursthouse, M. B. (2006). Inorg. Chem. 45, 11019–11029.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, P. P., Cheng, A. L., Yue, Q., Liu, N., Sun, W. W. & Gao, E. Q. (2008). Cryst. Growth Des. 8, 1668–1674.  Web of Science CrossRef CAS Google Scholar
First citationMa, Y., Cheng, A. L., Zhang, J. Y., Yue, Q. & Gao, E. Q. (2009). Cryst. Growth Des. 9, 867–873.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, Y. Y., Hou, H. W., Wei, Y. L., Fan, Y. T., Zhu, Y., Du, C. X. & Xin, X. Q. (2001). Inorg. Chem. Commun. 4, 358–361.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds