organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,5E)-2,5-Difurfuryl­idene­cyclo­penta­none

aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: mashy910@163.com

(Received 5 November 2009; accepted 9 November 2009; online 14 November 2009)

In the title mol­ecule, C15H12O3, the three five-membered rings are nearly coplanar: the dihedral angles between the cyclopentanone ring and the furan rings are 3.5 (2) and 9.7 (2)°, and the two furan rings form a dihedral angle of 7.2 (2)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds help to consolidate the crystal packing.

Related literature

For background to the use of bis­(aryl­methyl­idene)cyclo­alkanones as building blocks for the synthesis of biologically active heterocycles, see Guilford et al. (1999[Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.]). For related structures, see: Du et al. (2007[Du, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595-o2596.]); Sun & Cui (2007[Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932-o1933.]); Wei et al. (2008[Wei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3

  • Mr = 240.25

  • Monoclinic, P 21 /c

  • a = 5.9280 (9) Å

  • b = 8.5031 (13) Å

  • c = 23.280 (3) Å

  • β = 92.139 (3)°

  • V = 1172.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.12 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.989, Tmax = 0.995

  • 5793 measured reflections

  • 2076 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 0.99

  • 2076 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.49 3.221 (4) 136
C4—H4A⋯O1ii 0.97 2.45 3.393 (3) 165
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford et al., 1999). In the present paper, we describe the crystal stucture of the title compound.

The title molecule adopts an E-configuration about the central olefinic bonds (Fig.1). The cyclopentanone ring and the furan rings are alomst coplanar. All bond lengths and angles are normal and correspond to those observed in the related substituted cyclopentanone and cyclohexanone analogues reported by Du et al. (2007), Sun & Cui (2007) and Wei et al. (2008). The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the use of bis(arylmethylidene)cycloalkanones as building blocks for the synthesis of biologically active heterocycles, see Guilford et al. (1999). For related structures, see: Du et al. (2007); Sun & Cui (2007); Wei et al. (2008).

Experimental top

Tetrabutylammonium bromide (0.3 mmol) and NaOH (5 mmol) were dissolved in the mixture of water (5 ml) and ethanol (2 ml). The solution was stirred at room temperature for 10 min,followed by added dropwise the mixture of furaldehyde (10 mmol) and cyclopentanone (5 mmol).The mixture was stirred at the temperature of 303 K for 2 h. When the reaction was complete, the residue was filtered. The precipitate was washed by water and recrystallized from ethyl acetate. Analysis calculated for C15H12O3: C 75.00,H 5.00%; found: C 74.90,H 5.03%. Crystals of (I) suitable for single-crystal X-ray analysis were selected after recrystallization.

Refinement top

All H-atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions, with C—H = 0.93 - 0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
(2E,5E)-2,5-Difurfurylidenecyclopentanone top
Crystal data top
C15H12O3F(000) = 504
Mr = 240.25Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point: 405 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.9280 (9) ÅCell parameters from 461 reflections
b = 8.5031 (13) Åθ = 3.0–18.7°
c = 23.280 (3) ŵ = 0.10 mm1
β = 92.139 (3)°T = 298 K
V = 1172.6 (3) Å3Block, yellow
Z = 40.12 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.989, Tmax = 0.995k = 109
5793 measured reflectionsl = 2719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2076 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C15H12O3V = 1172.6 (3) Å3
Mr = 240.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9280 (9) ŵ = 0.10 mm1
b = 8.5031 (13) ÅT = 298 K
c = 23.280 (3) Å0.12 × 0.08 × 0.05 mm
β = 92.139 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1083 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.995Rint = 0.059
5793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
2076 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2374 (3)0.2225 (2)0.62045 (7)0.0606 (6)
O21.3568 (3)0.4626 (2)0.42876 (8)0.0648 (6)
O30.7570 (3)0.1375 (2)0.73472 (8)0.0640 (6)
C11.0690 (5)0.1894 (3)0.58984 (11)0.0443 (7)
C21.0293 (4)0.2376 (3)0.52998 (10)0.0416 (7)
C30.8083 (4)0.1745 (3)0.50780 (10)0.0496 (7)
H3A0.82960.10480.47550.059*
H3B0.70910.25970.49540.059*
C40.7065 (4)0.0834 (3)0.55845 (10)0.0487 (7)
H4A0.56550.13110.56920.058*
H4B0.67800.02520.54780.058*
C50.8774 (4)0.0925 (3)0.60707 (11)0.0430 (7)
C61.1804 (4)0.3239 (3)0.50282 (11)0.0476 (7)
H61.30980.35080.52440.057*
C71.1698 (5)0.3802 (3)0.44512 (12)0.0459 (7)
C81.0169 (5)0.3795 (3)0.40086 (12)0.0569 (8)
H80.87550.33200.40040.068*
C91.1100 (6)0.4640 (3)0.35521 (12)0.0652 (9)
H91.04270.48310.31920.078*
C101.3128 (6)0.5103 (4)0.37419 (13)0.0704 (10)
H101.41220.56840.35260.084*
C110.8754 (4)0.0258 (3)0.65893 (11)0.0499 (7)
H111.00110.04480.68300.060*
C120.7047 (5)0.0711 (3)0.68205 (11)0.0465 (7)
C130.4940 (5)0.1134 (3)0.66577 (12)0.0579 (8)
H130.41700.08440.63190.069*
C140.4101 (5)0.2101 (4)0.70957 (13)0.0657 (9)
H140.26820.25660.71010.079*
C150.5736 (5)0.2212 (4)0.74968 (13)0.0642 (9)
H150.56400.27860.78350.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (12)0.0831 (16)0.0497 (12)0.0054 (11)0.0089 (9)0.0018 (10)
O20.0632 (13)0.0725 (15)0.0587 (14)0.0127 (11)0.0024 (10)0.0110 (11)
O30.0670 (14)0.0815 (16)0.0430 (12)0.0039 (12)0.0042 (10)0.0100 (10)
C10.0404 (16)0.0489 (18)0.0437 (17)0.0062 (14)0.0016 (13)0.0033 (13)
C20.0419 (16)0.0414 (17)0.0413 (16)0.0049 (13)0.0006 (12)0.0041 (12)
C30.0478 (17)0.0550 (19)0.0456 (17)0.0013 (14)0.0021 (13)0.0022 (13)
C40.0449 (17)0.0526 (18)0.0484 (17)0.0014 (14)0.0006 (13)0.0019 (13)
C50.0422 (16)0.0451 (17)0.0417 (17)0.0039 (13)0.0022 (13)0.0042 (13)
C60.0472 (17)0.0489 (19)0.0466 (17)0.0040 (14)0.0018 (13)0.0021 (13)
C70.0457 (17)0.0408 (17)0.0515 (18)0.0017 (13)0.0048 (14)0.0021 (13)
C80.059 (2)0.059 (2)0.0522 (19)0.0027 (15)0.0028 (16)0.0025 (15)
C90.090 (3)0.062 (2)0.0430 (19)0.0013 (18)0.0044 (17)0.0024 (16)
C100.094 (3)0.064 (2)0.054 (2)0.0035 (19)0.0106 (19)0.0113 (17)
C110.0482 (17)0.058 (2)0.0435 (17)0.0025 (14)0.0019 (13)0.0027 (14)
C120.0539 (19)0.0477 (18)0.0377 (16)0.0054 (15)0.0009 (13)0.0013 (13)
C130.058 (2)0.066 (2)0.0493 (18)0.0032 (16)0.0052 (15)0.0082 (15)
C140.061 (2)0.078 (2)0.058 (2)0.0164 (17)0.0007 (17)0.0083 (17)
C150.072 (2)0.071 (2)0.050 (2)0.0090 (19)0.0120 (17)0.0091 (16)
Geometric parameters (Å, º) top
O1—C11.237 (3)C6—C71.425 (3)
O2—C101.350 (3)C6—H60.9300
O2—C71.377 (3)C7—C81.347 (3)
O3—C151.356 (3)C8—C91.412 (4)
O3—C121.375 (3)C8—H80.9300
C1—C21.463 (3)C9—C101.326 (4)
C1—C51.471 (3)C9—H90.9300
C2—C61.335 (3)C10—H100.9300
C2—C31.490 (3)C11—C121.426 (4)
C3—C41.552 (3)C11—H110.9300
C3—H3A0.9700C12—C131.341 (3)
C3—H3B0.9700C13—C141.415 (4)
C4—C51.493 (3)C13—H130.9300
C4—H4A0.9700C14—C151.324 (3)
C4—H4B0.9700C14—H140.9300
C5—C111.335 (3)C15—H150.9300
C10—O2—C7106.5 (2)C8—C7—C6136.4 (3)
C15—O3—C12106.8 (2)O2—C7—C6115.1 (2)
O1—C1—C2125.6 (3)C7—C8—C9107.6 (3)
O1—C1—C5125.8 (2)C7—C8—H8126.2
C2—C1—C5108.6 (2)C9—C8—H8126.2
C6—C2—C1121.2 (2)C10—C9—C8106.0 (3)
C6—C2—C3129.1 (2)C10—C9—H9127.0
C1—C2—C3109.7 (2)C8—C9—H9127.0
C2—C3—C4106.2 (2)C9—C10—O2111.4 (3)
C2—C3—H3A110.5C9—C10—H10124.3
C4—C3—H3A110.5O2—C10—H10124.3
C2—C3—H3B110.5C5—C11—C12128.1 (2)
C4—C3—H3B110.5C5—C11—H11115.9
H3A—C3—H3B108.7C12—C11—H11115.9
C5—C4—C3106.2 (2)C13—C12—O3108.6 (2)
C5—C4—H4A110.5C13—C12—C11135.6 (3)
C3—C4—H4A110.5O3—C12—C11115.7 (2)
C5—C4—H4B110.5C12—C13—C14107.5 (3)
C3—C4—H4B110.5C12—C13—H13126.2
H4A—C4—H4B108.7C14—C13—H13126.2
C11—C5—C1121.2 (2)C15—C14—C13106.4 (3)
C11—C5—C4129.4 (2)C15—C14—H14126.8
C1—C5—C4109.3 (2)C13—C14—H14126.8
C2—C6—C7128.6 (2)C14—C15—O3110.8 (3)
C2—C6—H6115.7C14—C15—H15124.6
C7—C6—H6115.7O3—C15—H15124.6
C8—C7—O2108.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.493.221 (4)136
C4—H4A···O1ii0.972.453.393 (3)165
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12O3
Mr240.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.9280 (9), 8.5031 (13), 23.280 (3)
β (°) 92.139 (3)
V3)1172.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.989, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
5793, 2076, 1083
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 0.99
No. of reflections2076
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.493.221 (4)135.8
C4—H4A···O1ii0.972.453.393 (3)165.2
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y07–2-14).

References

First citationDu, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595–o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, o1932–o1933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, o1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds