organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Dimeth­­oxy-N,N-bis­­(2-pyridylmeth­yl)aniline

aSchool of Pharmacy, Binzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: hjli80@163.com

(Received 12 November 2009; accepted 16 November 2009; online 21 November 2009)

In the title mol­ecule, C20H21N3O2, the benzene ring forms dihedral angles of 80.8 (1) and 83.5 (1)° with the two terminal pyridine rings. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001].

Related literature

For general background to organic ligand-based crystal mater­ials, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342-8356.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For related structures, see: Frisch & Cahil (2008[Frisch, M. & Cahil, C. L. (2008). Cryst. Growth. Des. 8, 2921-2928.]); Shattock et al. (2008[Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth. Des. 8, 4533-4545.]); Shirman et al. (2008[Shirman, T., Lamere, J.-F., Shimon, L. J. W., Gupta, T., Martin, J. M. L. & van der Boom, M. E. (2008). Cryst. Growth. Des. 8, 3066-3072.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O2

  • Mr = 335.40

  • Monoclinic, P 21 /c

  • a = 15.630 (3) Å

  • b = 5.9562 (12) Å

  • c = 20.088 (4) Å

  • β = 111.55 (3)°

  • V = 1739.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.978, Tmax = 0.983

  • 14749 measured reflections

  • 4106 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.10

  • 4106 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.49 3.3050 (15) 144
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, considerable research has been put into the design and elaboration of new organic ligand-based crystal materials because of their importance in supramolecular chemistry, materials science and solid-state chemistry (Desiraju, 2007; Moulton & Zaworotko, 2001). It is well known that the construction of such materials strongly depends on the nature of organic bridging units. In this regard, considerable attention has been devoted to the design of new functional N-heterocyclic organic bridging units. Among of them, pyridines are useful building blocks, which are frequently employed in the construction of some interesting metal-organic frameworks and organic crystals (Frisch & Cahil, 2008; Shattock et al., 2008; Shirman et al., 2008). Herein, we report a new pyridine compound which could be applied for the preparation of metal-organic and organic crystals.

In the title molecule, (I) (Fig. 1), two pyridine rings form dihedral angles of 80.8 (1) and 83.5 (1)°, respectively, with the central benzene ring. The intermolecular C—H···O interaction (Table 1) links adjacent molecules into chains along the direction [001].

Related literature top

For general background toorganic ligand-based crystal materials, see: Desiraju (2007); Moulton & Zaworotko (2001). For related structures, see: Frisch & Cahil (2008); Shattock et al. (2008); Shirman et al. (2008).

Experimental top

3,5-Dimethoxyaniline (73.9 mg, 0.6 mmol) and 5 N NaOH (0.8 ml) were added to the solution of 2-bromomethylprydine (0.525 g, 3.05 mmol) in 1 ml of water, the obtained mixture was stirred vigorously for 24 h at room temperature. Then the mixture was extracted with 15 ml of CH2Cl2 for three times and the combined organic layers were dried over anhydrous Na2SO4. The crude material was purified by column chromatography on silica gel eluting with petroleum ether/EtOAc (3/1, V/V) to afford the desired product as a yellow solid (0.12 g, 58%). 1H NMR (400 MHz, CDCl3): δ = 3.64 (s, 6H), 4.82 (s, 4H), 5.87 (s, 3H), 7.14 (t, J = 6.4 Hz, 2H), 7.29 (s, 2H), 7.64 (t, J = 7.6 Hz, 2H), 8.58 (d, J = 4.4 Hz, 2H).

Refinement top

All H atoms were positioned geometrically (C—H 0.95 - 0.99 Å), and refined in the riding model approximation, with Uiso(H) = 1.2-1.5 Ueq(C) .

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
3,5-Dimethoxy-N,N-bis(2-pyridylmethyl)aniline top
Crystal data top
C20H21N3O2F(000) = 712
Mr = 335.40Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4823 reflections
a = 15.630 (3) Åθ = 2.2–27.9°
b = 5.9562 (12) ŵ = 0.08 mm1
c = 20.088 (4) ÅT = 113 K
β = 111.55 (3)°Block, colourless
V = 1739.3 (6) Å30.27 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4106 independent reflections
Radiation source: rotating anode3258 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 2013
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 77
Tmin = 0.978, Tmax = 0.983l = 2626
14749 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
4106 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H21N3O2V = 1739.3 (6) Å3
Mr = 335.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.630 (3) ŵ = 0.08 mm1
b = 5.9562 (12) ÅT = 113 K
c = 20.088 (4) Å0.27 × 0.25 × 0.20 mm
β = 111.55 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4106 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3258 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.038
14749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
4106 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46394 (5)0.69311 (15)0.32987 (5)0.0298 (2)
O20.67567 (5)0.25014 (13)0.51460 (4)0.0262 (2)
N10.79174 (6)0.85369 (16)0.41961 (5)0.0225 (2)
N20.76094 (6)1.11713 (16)0.24609 (5)0.0232 (2)
N30.98074 (6)0.69084 (17)0.58297 (5)0.0270 (2)
C10.56528 (7)0.47409 (19)0.42047 (6)0.0225 (2)
H10.51420.38820.42080.027*
C20.55351 (7)0.65475 (19)0.37374 (6)0.0223 (2)
C30.62677 (7)0.78159 (19)0.37172 (6)0.0215 (2)
H30.61680.90190.33870.026*
C40.71674 (7)0.72922 (18)0.41968 (6)0.0195 (2)
C50.72901 (7)0.55021 (18)0.46686 (6)0.0203 (2)
H50.78890.51400.49950.024*
C60.65369 (7)0.42403 (18)0.46634 (6)0.0204 (2)
C70.60170 (8)0.1182 (2)0.51853 (7)0.0298 (3)
H7A0.56020.21380.53260.045*
H7B0.62610.00120.55400.045*
H7C0.56790.05130.47160.045*
C80.44478 (8)0.8805 (2)0.28219 (7)0.0334 (3)
H8A0.46561.01890.30980.050*
H8B0.37840.88930.25500.050*
H8C0.47720.86180.24900.050*
C90.78119 (8)1.03228 (18)0.36833 (6)0.0226 (2)
H9A0.83461.13460.38730.027*
H9B0.72541.11960.36370.027*
C100.77348 (7)0.95312 (18)0.29448 (6)0.0196 (2)
C110.78065 (8)0.72861 (19)0.27911 (6)0.0260 (3)
H110.78870.61660.31450.031*
C120.77589 (9)0.6707 (2)0.21078 (7)0.0317 (3)
H120.78140.51830.19900.038*
C130.76299 (9)0.8373 (2)0.16036 (6)0.0308 (3)
H130.75970.80280.11330.037*
C140.75496 (8)1.0555 (2)0.18028 (6)0.0271 (3)
H140.74451.16960.14510.033*
C150.88451 (7)0.7731 (2)0.45984 (6)0.0234 (3)
H15A0.92690.83640.43830.028*
H15B0.88540.60770.45530.028*
C160.91979 (7)0.83373 (19)0.53877 (6)0.0210 (2)
C171.01752 (8)0.7486 (2)0.65253 (7)0.0306 (3)
H171.06020.64810.68460.037*
C180.99727 (8)0.9438 (2)0.68009 (7)0.0317 (3)
H181.02650.97910.72940.038*
C190.93321 (8)1.0875 (2)0.63410 (7)0.0327 (3)
H190.91681.22290.65140.039*
C200.89329 (8)1.0310 (2)0.56236 (6)0.0272 (3)
H200.84841.12600.52980.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (4)0.0381 (5)0.0312 (5)0.0010 (3)0.0040 (3)0.0086 (4)
O20.0244 (4)0.0261 (5)0.0271 (4)0.0037 (3)0.0083 (3)0.0054 (3)
N10.0175 (5)0.0297 (5)0.0204 (5)0.0037 (4)0.0069 (4)0.0031 (4)
N20.0220 (5)0.0220 (5)0.0235 (5)0.0002 (4)0.0058 (4)0.0019 (4)
N30.0217 (5)0.0299 (6)0.0281 (5)0.0012 (4)0.0075 (4)0.0028 (4)
C10.0184 (5)0.0268 (6)0.0234 (6)0.0056 (4)0.0090 (4)0.0015 (5)
C20.0177 (5)0.0289 (6)0.0200 (5)0.0005 (4)0.0066 (4)0.0014 (5)
C30.0208 (5)0.0243 (6)0.0199 (5)0.0005 (4)0.0082 (4)0.0012 (4)
C40.0188 (5)0.0233 (6)0.0182 (5)0.0030 (4)0.0089 (4)0.0046 (4)
C50.0166 (5)0.0248 (6)0.0190 (5)0.0006 (4)0.0058 (4)0.0023 (4)
C60.0242 (6)0.0210 (6)0.0173 (5)0.0013 (4)0.0093 (4)0.0018 (4)
C70.0315 (7)0.0280 (6)0.0317 (7)0.0062 (5)0.0137 (5)0.0036 (5)
C80.0237 (6)0.0366 (7)0.0342 (7)0.0031 (5)0.0040 (5)0.0092 (6)
C90.0227 (5)0.0220 (6)0.0248 (6)0.0050 (4)0.0109 (5)0.0017 (5)
C100.0147 (5)0.0217 (6)0.0220 (5)0.0023 (4)0.0062 (4)0.0003 (4)
C110.0338 (6)0.0201 (6)0.0268 (6)0.0021 (5)0.0142 (5)0.0030 (5)
C120.0460 (7)0.0209 (6)0.0321 (7)0.0032 (5)0.0190 (6)0.0039 (5)
C130.0400 (7)0.0305 (7)0.0235 (6)0.0057 (5)0.0135 (5)0.0032 (5)
C140.0300 (6)0.0262 (6)0.0218 (6)0.0036 (5)0.0056 (5)0.0039 (5)
C150.0162 (5)0.0305 (6)0.0247 (6)0.0033 (4)0.0091 (4)0.0020 (5)
C160.0143 (5)0.0239 (6)0.0252 (6)0.0033 (4)0.0076 (4)0.0006 (5)
C170.0214 (6)0.0402 (7)0.0278 (6)0.0024 (5)0.0062 (5)0.0070 (6)
C180.0232 (6)0.0474 (8)0.0228 (6)0.0051 (5)0.0065 (5)0.0037 (6)
C190.0307 (7)0.0334 (7)0.0347 (7)0.0018 (5)0.0129 (6)0.0090 (6)
C200.0217 (6)0.0277 (6)0.0297 (6)0.0024 (5)0.0063 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C21.3719 (14)C8—H8B0.9800
O1—C81.4290 (15)C8—H8C0.9800
O2—C61.3733 (13)C9—C101.5185 (15)
O2—C71.4237 (14)C9—H9A0.9900
N1—C41.3872 (14)C9—H9B0.9900
N1—C91.4475 (14)C10—C111.3862 (16)
N1—C151.4577 (14)C11—C121.3905 (17)
N2—C101.3408 (14)C11—H110.9500
N2—C141.3417 (15)C12—C131.3788 (17)
N3—C161.3411 (15)C12—H120.9500
N3—C171.3458 (16)C13—C141.3794 (18)
C1—C61.3827 (16)C13—H130.9500
C1—C21.3949 (16)C14—H140.9500
C1—H10.9500C15—C161.5185 (16)
C2—C31.3847 (15)C15—H15A0.9900
C3—C41.4169 (16)C15—H15B0.9900
C3—H30.9500C16—C201.3859 (16)
C4—C51.3923 (15)C17—C181.3738 (18)
C5—C61.3935 (15)C17—H170.9500
C5—H50.9500C18—C191.3816 (18)
C7—H7A0.9800C18—H180.9500
C7—H7B0.9800C19—C201.3852 (17)
C7—H7C0.9800C19—H190.9500
C8—H8A0.9800C20—H200.9500
C2—O1—C8118.28 (9)N1—C9—H9B108.6
C6—O2—C7117.23 (9)C10—C9—H9B108.6
C4—N1—C9121.20 (9)H9A—C9—H9B107.6
C4—N1—C15119.49 (9)N2—C10—C11122.92 (10)
C9—N1—C15117.81 (9)N2—C10—C9114.84 (9)
C10—N2—C14116.99 (10)C11—C10—C9122.23 (10)
C16—N3—C17116.98 (11)C10—C11—C12118.68 (11)
C6—C1—C2117.86 (10)C10—C11—H11120.7
C6—C1—H1121.1C12—C11—H11120.7
C2—C1—H1121.1C13—C12—C11119.13 (12)
O1—C2—C3123.36 (10)C13—C12—H12120.4
O1—C2—C1114.32 (10)C11—C12—H12120.4
C3—C2—C1122.31 (10)C12—C13—C14118.00 (11)
C2—C3—C4119.01 (10)C12—C13—H13121.0
C2—C3—H3120.5C14—C13—H13121.0
C4—C3—H3120.5N2—C14—C13124.25 (11)
N1—C4—C5120.32 (10)N2—C14—H14117.9
N1—C4—C3120.64 (10)C13—C14—H14117.9
C5—C4—C3119.04 (10)N1—C15—C16113.97 (9)
C4—C5—C6120.21 (10)N1—C15—H15A108.8
C4—C5—H5119.9C16—C15—H15A108.8
C6—C5—H5119.9N1—C15—H15B108.8
O2—C6—C1124.25 (10)C16—C15—H15B108.8
O2—C6—C5114.19 (9)H15A—C15—H15B107.7
C1—C6—C5121.56 (10)N3—C16—C20122.72 (11)
O2—C7—H7A109.5N3—C16—C15115.94 (10)
O2—C7—H7B109.5C20—C16—C15121.27 (10)
H7A—C7—H7B109.5N3—C17—C18124.13 (11)
O2—C7—H7C109.5N3—C17—H17117.9
H7A—C7—H7C109.5C18—C17—H17117.9
H7B—C7—H7C109.5C17—C18—C19118.20 (12)
O1—C8—H8A109.5C17—C18—H18120.9
O1—C8—H8B109.5C19—C18—H18120.9
H8A—C8—H8B109.5C18—C19—C20118.94 (12)
O1—C8—H8C109.5C18—C19—H19120.5
H8A—C8—H8C109.5C20—C19—H19120.5
H8B—C8—H8C109.5C19—C20—C16119.00 (11)
N1—C9—C10114.49 (9)C19—C20—H20120.5
N1—C9—H9A108.6C16—C20—H20120.5
C10—C9—H9A108.6
C8—O1—C2—C33.27 (16)C14—N2—C10—C110.28 (16)
C8—O1—C2—C1177.50 (10)C14—N2—C10—C9179.13 (9)
C6—C1—C2—O1179.80 (10)N1—C9—C10—N2178.10 (9)
C6—C1—C2—C30.56 (17)N1—C9—C10—C113.04 (15)
O1—C2—C3—C4179.59 (10)N2—C10—C11—C120.90 (17)
C1—C2—C3—C41.24 (17)C9—C10—C11—C12177.88 (10)
C9—N1—C4—C5176.48 (9)C10—C11—C12—C130.87 (18)
C15—N1—C4—C510.78 (15)C11—C12—C13—C140.28 (18)
C9—N1—C4—C33.31 (16)C10—N2—C14—C131.55 (17)
C15—N1—C4—C3169.01 (10)C12—C13—C14—N21.56 (19)
C2—C3—C4—N1179.48 (10)C4—N1—C15—C1683.43 (13)
C2—C3—C4—C50.72 (16)C9—N1—C15—C16110.39 (11)
N1—C4—C5—C6179.36 (10)C17—N3—C16—C201.19 (16)
C3—C4—C5—C60.44 (16)C17—N3—C16—C15175.75 (9)
C7—O2—C6—C11.89 (16)N1—C15—C16—N3150.93 (10)
C7—O2—C6—C5178.13 (10)N1—C15—C16—C2032.08 (14)
C2—C1—C6—O2179.33 (10)C16—N3—C17—C180.83 (18)
C2—C1—C6—C50.65 (16)N3—C17—C18—C191.91 (19)
C4—C5—C6—O2178.84 (9)C17—C18—C19—C200.95 (18)
C4—C5—C6—C11.15 (17)C18—C19—C20—C160.90 (18)
C4—N1—C9—C1079.37 (13)N3—C16—C20—C192.06 (17)
C15—N1—C9—C1086.56 (12)C15—C16—C20—C19174.73 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.493.3050 (15)144
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21N3O2
Mr335.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)15.630 (3), 5.9562 (12), 20.088 (4)
β (°) 111.55 (3)
V3)1739.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14749, 4106, 3258
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.10
No. of reflections4106
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.493.3050 (15)144
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the Binzhou Medical College for financial support (grant No. BY2007KJ13).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342–8356.  Web of Science CrossRef Google Scholar
First citationFrisch, M. & Cahil, C. L. (2008). Cryst. Growth. Des. 8, 2921–2928.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth. Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirman, T., Lamere, J.-F., Shimon, L. J. W., Gupta, T., Martin, J. M. L. & van der Boom, M. E. (2008). Cryst. Growth. Des. 8, 3066–3072.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds