organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-2,4-di-4-pyridyl-2,3-di­hydro-1H-1,5-benzodiazepine acetic acid solvate

aState Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, People's Republic of China
*Correspondence e-mail: smjiang@jlu.edu.cn

(Received 18 November 2009; accepted 20 November 2009; online 25 November 2009)

In the title compound, C20H18N4·CH3COOH, the benzene ring forms dihedral angles of 81.34 (11) and 54.32 (11)° with the two pyridine rings. In the crystal, inter­molecular O—H⋯N hydrogen bonding links one 1,5-benzodiazepine mol­ecule and one acetic acid solvent mol­ecule into a dimer. These dimers, related by translation along the b axis, are further linked into chains via weak inter­molecular N—H⋯N hydrogen bonds.

Related literature

For details of the synthesis and a related compound, see Hou et al. (2007[Hou, Q.-F., Ye, L. & Jiang, S.-M. (2007). Acta Cryst. E63, o939-o940.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4·C2H4O2

  • Mr = 374.44

  • Triclinic, [P \overline 1]

  • a = 8.925 (6) Å

  • b = 10.172 (8) Å

  • c = 12.283 (9) Å

  • α = 68.56 (3)°

  • β = 75.41 (3)°

  • γ = 88.52 (3)°

  • V = 1001.8 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.11 × 0.10 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.991, Tmax = 0.993

  • 9946 measured reflections

  • 4547 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.211

  • S = 1.04

  • 4547 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.86 2.23 3.079 (4) 172
O2—H2B⋯N3ii 0.82 1.83 2.640 (4) 168
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC & Rigaku Corporation (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was unexpectedly obtained during our study of the Schiff base bis-pyridine complex (Hou et al., 2007). In this paper, we report its crystal structure.

In (I) (Fig.1), the dihedral angles between benzene ring and two pyridine rings are 81.34 (11) ° and 54.32 (11) °, respectively. In the crystal structure, the intramolecular O—H···N and intermolecule N—H···N hydrogen bonds (Table 1) are observed.

Related literature top

For details of the synthesis and a related compound, see Hou et al. (2007).

Experimental top

The title compound and its single crystals suitable for the X-ray diffraction were prepared by slow evaporation of the ethanol solution which contains o-phenylenediamine, 4-acetylpyridine and a small amount of acetic acid at room temperatue.

Refinement top

All H atoms were placed in calculated positions (C—H 0.93 - 0.97 Å, N—H 0.86 Å, O—H 0.82 Å), and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 or 1.5 Ueq of the parent atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.
2-Methyl-2,4-di-4-pyridyl-2,3-dihydro-1H-1,5-benzodiazepine acetic acid solvate top
Crystal data top
C20H18N4·C2H4O2Z = 2
Mr = 374.44F(000) = 396
Triclinic, P1Dx = 1.241 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.925 (6) ÅCell parameters from 6051 reflections
b = 10.172 (8) Åθ = 3.1–27.5°
c = 12.283 (9) ŵ = 0.08 mm1
α = 68.56 (3)°T = 290 K
β = 75.41 (3)°Block, colourless
γ = 88.52 (3)°0.11 × 0.10 × 0.09 mm
V = 1001.8 (12) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4547 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.991, Tmax = 0.993k = 1313
9946 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1067P)2 + 0.0338P]
where P = (Fo2 + 2Fc2)/3
4547 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H18N4·C2H4O2γ = 88.52 (3)°
Mr = 374.44V = 1001.8 (12) Å3
Triclinic, P1Z = 2
a = 8.925 (6) ÅMo Kα radiation
b = 10.172 (8) ŵ = 0.08 mm1
c = 12.283 (9) ÅT = 290 K
α = 68.56 (3)°0.11 × 0.10 × 0.09 mm
β = 75.41 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4547 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2400 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.993Rint = 0.039
9946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
4547 reflectionsΔρmin = 0.36 e Å3
256 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2037 (3)0.2500 (2)1.0826 (2)0.0436 (6)
C20.1293 (3)0.2017 (3)1.2065 (3)0.0533 (7)
H20.09900.26791.24220.064*
C30.0993 (3)0.0601 (3)1.2775 (3)0.0603 (7)
H30.05190.03101.36000.072*
C40.1407 (3)0.0376 (3)1.2242 (3)0.0598 (8)
H40.12060.13381.27070.072*
C50.2111 (3)0.0060 (2)1.1037 (3)0.0545 (7)
H50.23790.06231.06980.065*
C60.2455 (3)0.1504 (2)1.0273 (2)0.0448 (6)
C70.3831 (3)0.3117 (2)0.8120 (2)0.0456 (6)
C80.5137 (3)0.2748 (3)0.7236 (3)0.0616 (8)
H8A0.58780.22470.76520.092*
H8B0.56390.36030.65900.092*
H8C0.47170.21630.69070.092*
C90.2688 (3)0.3983 (2)0.7451 (2)0.0476 (6)
C100.1148 (4)0.3542 (3)0.7753 (3)0.0701 (9)
H100.07500.26810.83740.084*
C110.0187 (4)0.4432 (4)0.7092 (4)0.0911 (12)
H110.08580.41360.72940.109*
C120.2161 (5)0.6063 (4)0.5942 (3)0.0795 (10)
H120.25260.69340.53250.095*
C130.3180 (4)0.5278 (3)0.6521 (3)0.0652 (8)
H130.42160.56140.62900.078*
C140.4524 (3)0.4008 (2)0.8686 (2)0.0458 (6)
H14A0.50780.34040.92440.055*
H14B0.52630.47410.80500.055*
C150.3307 (3)0.4680 (2)0.9343 (2)0.0400 (5)
C160.3302 (3)0.6249 (2)0.8930 (2)0.0409 (5)
C170.4648 (3)0.7133 (2)0.8320 (2)0.0468 (6)
H170.55840.67660.80800.056*
C180.4577 (3)0.8567 (2)0.8072 (3)0.0533 (7)
H180.54990.91390.76900.064*
C190.1991 (3)0.8327 (3)0.8883 (3)0.0587 (7)
H190.10580.87330.90530.070*
C200.1949 (3)0.6889 (3)0.9202 (3)0.0534 (7)
H200.10130.63440.96010.064*
C210.6804 (5)0.8687 (5)0.4824 (4)0.1079 (15)
H21A0.57080.84320.50840.162*
H21B0.71330.90670.39550.162*
H21C0.70250.93870.51260.162*
C220.7639 (4)0.7424 (4)0.5294 (3)0.0768 (10)
N10.2212 (2)0.39891 (19)1.02797 (19)0.0445 (5)
N20.3101 (3)0.1793 (2)0.9066 (2)0.0551 (6)
H2A0.30690.10930.88360.066*
N30.0682 (4)0.5654 (3)0.6210 (3)0.0836 (9)
N40.3286 (3)0.9185 (2)0.8342 (2)0.0556 (6)
O10.7070 (3)0.6287 (3)0.6004 (3)0.1032 (9)
O20.9124 (3)0.7674 (3)0.5022 (3)0.1017 (9)
H2B0.94950.70150.54690.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (12)0.0344 (12)0.0494 (14)0.0018 (10)0.0064 (11)0.0128 (10)
C20.0505 (14)0.0459 (14)0.0580 (17)0.0008 (11)0.0022 (13)0.0207 (12)
C30.0594 (16)0.0541 (16)0.0506 (16)0.0054 (13)0.0016 (13)0.0082 (13)
C40.0639 (17)0.0381 (13)0.0614 (18)0.0055 (12)0.0059 (15)0.0063 (12)
C50.0593 (16)0.0318 (12)0.0657 (18)0.0025 (11)0.0113 (14)0.0136 (12)
C60.0443 (13)0.0330 (11)0.0535 (15)0.0023 (10)0.0088 (12)0.0145 (10)
C70.0493 (13)0.0320 (11)0.0527 (14)0.0030 (10)0.0068 (12)0.0167 (10)
C80.0634 (17)0.0520 (15)0.0663 (18)0.0084 (13)0.0006 (15)0.0295 (14)
C90.0530 (15)0.0407 (12)0.0531 (15)0.0034 (11)0.0099 (12)0.0247 (11)
C100.0612 (18)0.0599 (17)0.089 (2)0.0034 (14)0.0206 (17)0.0266 (16)
C110.065 (2)0.099 (3)0.125 (3)0.009 (2)0.034 (2)0.053 (3)
C120.089 (3)0.074 (2)0.073 (2)0.0165 (19)0.028 (2)0.0203 (17)
C130.0704 (19)0.0555 (16)0.0571 (17)0.0060 (14)0.0128 (15)0.0090 (13)
C140.0445 (13)0.0332 (11)0.0576 (15)0.0035 (10)0.0088 (12)0.0175 (11)
C150.0426 (12)0.0310 (11)0.0477 (13)0.0001 (9)0.0107 (11)0.0166 (10)
C160.0439 (12)0.0337 (11)0.0467 (13)0.0007 (9)0.0102 (11)0.0178 (10)
C170.0439 (13)0.0386 (12)0.0554 (15)0.0006 (10)0.0055 (12)0.0193 (11)
C180.0523 (15)0.0373 (13)0.0640 (17)0.0072 (11)0.0067 (13)0.0167 (12)
C190.0472 (14)0.0398 (13)0.090 (2)0.0043 (11)0.0119 (14)0.0291 (14)
C200.0448 (13)0.0366 (12)0.0772 (19)0.0015 (10)0.0091 (13)0.0235 (12)
C210.094 (3)0.110 (3)0.105 (3)0.022 (2)0.039 (3)0.015 (3)
C220.0560 (18)0.089 (2)0.081 (2)0.0001 (17)0.0146 (17)0.028 (2)
N10.0446 (11)0.0336 (10)0.0524 (12)0.0004 (8)0.0069 (10)0.0163 (9)
N20.0783 (15)0.0291 (10)0.0525 (13)0.0022 (10)0.0052 (12)0.0163 (9)
N30.104 (2)0.0753 (19)0.083 (2)0.0293 (17)0.0411 (19)0.0328 (16)
N40.0589 (13)0.0346 (10)0.0743 (16)0.0030 (10)0.0151 (12)0.0228 (10)
O10.0889 (18)0.0776 (17)0.108 (2)0.0144 (14)0.0036 (16)0.0122 (16)
O20.0828 (17)0.097 (2)0.094 (2)0.0047 (14)0.0226 (15)0.0014 (15)
Geometric parameters (Å, º) top
C1—C21.400 (4)C12—C131.358 (4)
C1—C61.408 (4)C12—H120.9300
C1—N11.409 (3)C13—H130.9300
C2—C31.375 (4)C14—C151.491 (3)
C2—H20.9300C14—H14A0.9700
C3—C41.373 (4)C14—H14B0.9700
C3—H30.9300C15—N11.284 (3)
C4—C51.360 (4)C15—C161.488 (3)
C4—H40.9300C16—C201.381 (4)
C5—C61.415 (3)C16—C171.387 (3)
C5—H50.9300C17—C181.380 (3)
C6—N21.370 (4)C17—H170.9300
C7—N21.452 (3)C18—N41.325 (3)
C7—C81.522 (4)C18—H180.9300
C7—C91.529 (3)C19—N41.334 (3)
C7—C141.546 (4)C19—C201.368 (4)
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—C221.471 (5)
C9—C101.371 (4)C21—H21A0.9600
C9—C131.382 (4)C21—H21B0.9600
C10—C111.410 (5)C21—H21C0.9600
C10—H100.9300C22—O11.194 (4)
C11—N31.309 (5)C22—O21.290 (4)
C11—H110.9300N2—H2A0.8600
C12—N31.317 (5)O2—H2B0.8200
C2—C1—C6119.0 (2)C12—C13—H13119.8
C2—C1—N1112.7 (2)C9—C13—H13119.8
C6—C1—N1128.2 (2)C15—C14—C7112.2 (2)
C3—C2—C1122.5 (3)C15—C14—H14A109.2
C3—C2—H2118.7C7—C14—H14A109.2
C1—C2—H2118.7C15—C14—H14B109.2
C4—C3—C2118.7 (3)C7—C14—H14B109.2
C4—C3—H3120.6H14A—C14—H14B107.9
C2—C3—H3120.6N1—C15—C16115.3 (2)
C5—C4—C3120.2 (2)N1—C15—C14124.3 (2)
C5—C4—H4119.9C16—C15—C14120.4 (2)
C3—C4—H4119.9C20—C16—C17116.8 (2)
C4—C5—C6123.1 (3)C20—C16—C15120.8 (2)
C4—C5—H5118.4C17—C16—C15122.3 (2)
C6—C5—H5118.5C18—C17—C16119.0 (2)
N2—C6—C1126.6 (2)C18—C17—H17120.5
N2—C6—C5116.9 (2)C16—C17—H17120.5
C1—C6—C5116.5 (2)N4—C18—C17124.4 (2)
N2—C7—C8107.2 (2)N4—C18—H18117.8
N2—C7—C9112.2 (2)C17—C18—H18117.8
C8—C7—C9109.8 (2)N4—C19—C20124.1 (2)
N2—C7—C14109.4 (2)N4—C19—H19117.9
C8—C7—C14109.2 (2)C20—C19—H19117.9
C9—C7—C14108.97 (19)C19—C20—C16119.8 (2)
C7—C8—H8A109.5C19—C20—H20120.1
C7—C8—H8B109.5C16—C20—H20120.1
H8A—C8—H8B109.5C22—C21—H21A109.5
C7—C8—H8C109.5C22—C21—H21B109.5
H8A—C8—H8C109.5H21A—C21—H21B109.5
H8B—C8—H8C109.5C22—C21—H21C109.5
C10—C9—C13117.3 (3)H21A—C21—H21C109.5
C10—C9—C7122.5 (2)H21B—C21—H21C109.5
C13—C9—C7120.2 (2)O1—C22—O2118.9 (3)
C9—C10—C11117.9 (3)O1—C22—C21126.4 (4)
C9—C10—H10121.0O2—C22—C21113.9 (3)
C11—C10—H10121.0C15—N1—C1123.9 (2)
N3—C11—C10123.7 (3)C6—N2—C7129.0 (2)
N3—C11—H11118.1C6—N2—H2A115.5
C10—C11—H11118.1C7—N2—H2A115.5
N3—C12—C13123.3 (3)C11—N3—C12117.4 (3)
N3—C12—H12118.3C18—N4—C19115.8 (2)
C13—C12—H12118.3C22—O2—H2B109.5
C12—C13—C9120.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.233.079 (4)172
O2—H2B···N3ii0.821.832.640 (4)168
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18N4·C2H4O2
Mr374.44
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.925 (6), 10.172 (8), 12.283 (9)
α, β, γ (°)68.56 (3), 75.41 (3), 88.52 (3)
V3)1001.8 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.11 × 0.10 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.991, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9946, 4547, 2400
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.211, 1.04
No. of reflections4547
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.233.079 (4)171.8
O2—H2B···N3ii0.821.832.640 (4)168.3
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20874038) and the National Basic Research Program of China (grant No. 2007CB936402).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, Q.-F., Ye, L. & Jiang, S.-M. (2007). Acta Cryst. E63, o939–o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku Corporation (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds