organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Boc-AzAla-Ala-OMe

aLaboratoire de Chimie Physique Macromoléculaire, UMR CRNS-INPL 7568, Nancy Université, BP 451, 54001 Nancy, France, and bLaboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), Nancy Université, UMR CNRS-UHP 7036, BP 70236, 54506 Vandoeuvre-lès-Nancy, France
*Correspondence e-mail: claude.didierjean@crm2.uhp-nancy.fr

(Received 15 October 2009; accepted 29 October 2009; online 14 November 2009)

The title compound (systematic name: tert-butyl 3-{[1-(methoxy­carbon­yl)eth­yl]amino­carbon­yl}-3-methyl­carbazate), C11H21N3O5, is a precursor for the study of a new class of foldamer based on aza/α-dipeptide oligomerization [Abbas et al. (2009[Abbas, C., Pickaert, G., Didierjean, C., Grégoire, B. J. & Vanderesse, R. (2009). Tetrahedron Lett. 50, 4158-4160.]). Tetra­hedron Lett. 50, 4158–4160]. The asymmetric unit consists of one mol­ecule in an extended conformation which is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For the synthesis, see: Majer & Randad (1994[Majer, P. & Randad, R. S. (1994). J. Org. Chem. 59, 1937-1938.]); Brosse et al. (2001[Brosse, N., Pinto, M.-F., Bodiguel, J. & Jamart-Gregoire, B. (2001). J. Org. Chem. 66, 2869-2873.]); Bouillon et al. (2004[Bouillon, I., Brosse, N., Vanderesse, R. & Jamart-Grégoire, B. (2004). Tetrahedron Lett. 45, 3569-3572.]); Abbas et al. (2009[Abbas, C., Pickaert, G., Didierjean, C., Grégoire, B. J. & Vanderesse, R. (2009). Tetrahedron Lett. 50, 4158-4160.]). For the geometry of the aza-residue in aza­peptides, see: Benatalah et al. (1991[Benatalah, Z., Aubry, A., Boussard, G. & Marraud, M. (1991). Int. J. Pept. Protein Res. 38, 603-605.]), André et al. (1996[André, F., Marraud, M., Boussard, G., Didierjean, C. & Aubry, A. (1996). Tetrahedron Lett. 37, 183-186.]). For Boc-AzAla-Pro-NHiPr, see: André et al. (1997[André, F., Boussard, G., Bayeul, D., Didierjean, C., Aubry, A. & Marraud, M. (1997). J. Pept. Res. 49, 556-562.]). For the refinement procedure, see: Flack & Schwarzenbach (1988[Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C11H21N3O5

  • Mr = 275.31

  • Tetragonal, P 41

  • a = 9.3194 (4) Å

  • c = 17.4420 (8) Å

  • V = 1514.86 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 14534 measured reflections

  • 1847 independent reflections

  • 1806 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 1.12

  • 1847 reflections

  • 178 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.18 2.972 (2) 153
N3—H3⋯O3i 0.86 2.03 2.850 (2) 159
C6—H6A⋯O4ii 0.96 2.55 3.303 (3) 136
C11—H11B⋯O4iii 0.96 2.41 3.346 (3) 164
Symmetry codes: (i) [y, -x+1, z-{\script{1\over 4}}]; (ii) x-1, y, z; (iii) [y, -x+2, z-{\script{1\over 4}}].

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our continuing studies on the synthesis and structure of hydrazino-and N-amino-peptides, we recently described the original and efficient synthesis of aza/α-dipeptides via Mitsunobu and trans-protections protocols starting from N-tert-butyloxycarbonylaminophtalimide (Abbas et al., 2009; Majer & Randad 1994; Brosse et al. 2001; Bouillon et al. 2004). Aza-peptides are pseudopeptides, in which nitrogen has been substituted for at least one of the CHα groups. Here we report the crystal structure of the pseudodipeptide Boc-AzAla-Ala-OMe (Fig. 1).

In the present study, the geometry of the aza-residue is similar to those observed for known azapeptides structures. In most of the cases, the α-nitrogen adopts a non-planar planar structure (André et al., 1996; Benatalah et al. 1991). In the title compound, the deviation of the α-nitrogen out of the plane, defined by the three atoms bonded to it, is 0.268 (2) Å. The greatest difference from standard peptide group concern the bond lengths and bond angles around the α-nitrogen: (i) the N—Nα (N1—N2) and Nα—Cβ (N2—C6) bonds are shorter by about 0.06Å than their homologous bonds in peptides; (ii) the Nα—C' ((N2—C7) bond of 1.392 (3)Å is shorter than the homologous Cα—C' bond and exceeds the dimension of the amide bond; (iii) the bond angles around the α-nitrogen are larger by 5–6° than the bond angles around the α-carbon.

In the solid state, Boc-AzAla-Pro-NHiPr (André et al., 1997) and the title compound Boc-AzAla-Ala-OMe adopt two distinct conformations with the Nα atoms having opposite configurations. In the former, the AzAla residue assumes the R chirality and the pseudodipeptide is folded by an intramolecular hydrogen bond between the (iPr)NH and the Boc(CO) groups. In the crystal of the title compound, the pseudodipeptides adopt an extended conformation which form infinite chains along the four fold axis. The N-H goups of AzaAla and Ala residues are engaged in intermolecular hydrogen bonds with the carbonyl groups of the N-terminal protecting group and the aza-residue, respectively, forming two C(4) chain motifs (Fig. 2, Etter 1990). Combination of these two motifs generates a new R22(12) pattern, shown in the Fig. 2. Finally, the third carbonyl group, C10=O4, is involved in weak CH···O hydrogen bonds forming a threedimensional network structure.

Related literature top

For the synthesis, see: Majer & Randad (1994); Brosse et al. (2001); Bouillon et al. (2004); Abbas et al. (2009). For the geometry of the aza-residue in azapeptides, see: Benatalah et al. (1991), André et al. (1996). For Boc-AzAla-Pro-NHiPr, see: André et al. (1997). For the refinement procedure, see: Flack & Schwarzenbach (1988). For hydrogen-bond motifs, see: Etter (1990).

Experimental top

The title compound was prepared from N-tert-butyloxycarbonylaminophtalimide (Abbas et al., 2009), and was crystallized by slow evaporation of a diethyl ether solution.

Refinement top

Because of the lack of any significant anomalous dispersion effects, the absolute configurations of the title compound could not be determined from the diffraction experiments but was known from the method of synthesis. The origin was fixed by floating-origin restraints (Flack & Schwarzenbach, 1988). All H atoms were located in difference Fourier maps. The C/N-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.96–0.98 Å and with N—H distance of 0.86 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for methine C—H, at 1.2Ueq(N) for the N—H group and at 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. All non-H atoms are represented by 25% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing view of the title compound showing the formation of the C(4)C(4)[R22(12)] graph set motif paralell to [001]. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) y, -x+1, z-1/4]
tert-butyl 3-{[1-(methoxycarbonyl)ethyl]aminocarbonyl}-3-methylcarbazate top
Crystal data top
C11H21N3O5Dx = 1.207 Mg m3
Mr = 275.31Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 14534 reflections
Hall symbol: P 4wθ = 2.5–27.9°
a = 9.3194 (4) ŵ = 0.10 mm1
c = 17.4420 (8) ÅT = 100 K
V = 1514.86 (12) Å3Prism, colorless
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 592
Data collection top
Nonis KappaCCD
diffractometer
Rint = 0.049
CCD rotation images, thick slices scansθmax = 27.8°, θmin = 2.5°
14534 measured reflectionsh = 1212
1847 independent reflectionsk = 1212
1806 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0164P)2 + 0.7016P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.17 e Å3
1847 reflectionsΔρmin = 0.13 e Å3
178 parameters
Crystal data top
C11H21N3O5Z = 4
Mr = 275.31Mo Kα radiation
Tetragonal, P41µ = 0.10 mm1
a = 9.3194 (4) ÅT = 100 K
c = 17.4420 (8) Å0.3 × 0.2 × 0.2 mm
V = 1514.86 (12) Å3
Data collection top
Nonis KappaCCD
diffractometer
1806 reflections with I > 2σ(I)
14534 measured reflectionsRint = 0.049
1847 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.12Δρmax = 0.17 e Å3
1847 reflectionsΔρmin = 0.13 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3488 (2)0.0563 (2)0.63461 (13)0.0228 (4)
C20.2822 (3)0.0204 (3)0.56621 (14)0.0311 (5)
H2A0.19020.0210.55510.047*
H2B0.27060.12040.5780.047*
H2C0.34380.01030.52240.047*
C30.2529 (3)0.0415 (2)0.70463 (14)0.0279 (5)
H3A0.29950.08370.74820.042*
H3B0.2350.05820.71450.042*
H3C0.16350.08980.69540.042*
C40.5016 (3)0.0058 (3)0.64752 (15)0.0308 (5)
H4A0.5570.0220.60190.046*
H4B0.50150.09480.65940.046*
H4C0.54310.05830.68940.046*
O10.35134 (16)0.20833 (15)0.60837 (9)0.0218 (3)
C50.3987 (2)0.3109 (2)0.65626 (12)0.0193 (4)
O20.43957 (17)0.29435 (17)0.72181 (9)0.0239 (3)
N10.39666 (19)0.44041 (18)0.61993 (11)0.0201 (4)
H10.37530.44640.57210.024*
N20.43006 (19)0.56280 (19)0.66214 (11)0.0200 (4)
C60.3156 (2)0.6117 (2)0.71325 (14)0.0259 (5)
H6A0.23040.630.68390.039*
H6B0.34510.69820.73860.039*
H6C0.29610.53890.75080.039*
C70.5716 (2)0.5760 (2)0.68660 (12)0.0189 (4)
O30.60321 (16)0.65021 (16)0.74280 (8)0.0221 (3)
N30.67193 (19)0.50835 (19)0.64451 (10)0.0209 (4)
H30.64870.46060.60420.025*
C80.8201 (2)0.5181 (2)0.66902 (13)0.0232 (4)
H80.82640.4780.72090.028*
C90.9146 (2)0.4274 (3)0.61671 (14)0.0296 (5)
H9A0.88530.32880.61980.044*
H9B1.01290.43580.63260.044*
H9C0.90520.46050.56480.044*
C100.8773 (2)0.6709 (3)0.67187 (13)0.0244 (4)
O40.97394 (18)0.7060 (2)0.71417 (11)0.0333 (4)
O50.81613 (16)0.75824 (17)0.62089 (9)0.0249 (3)
C110.8685 (3)0.9048 (3)0.62253 (16)0.0310 (5)
H11A0.84240.94870.67030.046*
H11B0.82670.95780.5810.046*
H11C0.9710.90480.61740.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (11)0.0171 (9)0.0199 (10)0.0034 (8)0.0039 (9)0.0017 (8)
C20.0429 (14)0.0269 (12)0.0236 (11)0.0138 (10)0.0058 (10)0.0039 (9)
C30.0345 (12)0.0232 (10)0.0261 (11)0.0033 (9)0.0091 (10)0.0012 (9)
C40.0339 (11)0.0269 (11)0.0317 (12)0.0044 (9)0.0059 (10)0.0039 (10)
O10.0288 (8)0.0190 (7)0.0178 (7)0.0036 (6)0.0026 (6)0.0000 (6)
C50.0183 (9)0.0217 (10)0.0180 (10)0.0021 (7)0.0011 (8)0.0017 (8)
O20.0304 (8)0.0240 (8)0.0172 (7)0.0031 (6)0.0033 (6)0.0007 (6)
N10.0251 (9)0.0199 (8)0.0155 (8)0.0020 (7)0.0033 (7)0.0001 (7)
N20.0217 (8)0.0204 (8)0.0178 (8)0.0010 (6)0.0005 (7)0.0014 (7)
C60.0224 (10)0.0256 (11)0.0295 (12)0.0017 (8)0.0029 (9)0.0037 (9)
C70.0213 (10)0.0190 (9)0.0164 (10)0.0028 (8)0.0009 (7)0.0023 (8)
O30.0240 (8)0.0256 (8)0.0165 (7)0.0023 (6)0.0026 (6)0.0024 (6)
N30.0197 (8)0.0273 (9)0.0157 (8)0.0014 (7)0.0003 (7)0.0035 (7)
C80.0212 (10)0.0306 (11)0.0179 (10)0.0013 (8)0.0020 (8)0.0005 (9)
C90.0231 (11)0.0413 (13)0.0243 (11)0.0049 (9)0.0008 (9)0.0043 (10)
C100.0186 (10)0.0357 (12)0.0188 (10)0.0012 (9)0.0007 (8)0.0009 (9)
O40.0263 (8)0.0421 (10)0.0316 (9)0.0027 (7)0.0105 (7)0.0012 (8)
O50.0228 (8)0.0301 (8)0.0217 (8)0.0039 (6)0.0038 (6)0.0018 (7)
C110.0283 (12)0.0330 (12)0.0317 (12)0.0052 (9)0.0019 (10)0.0031 (10)
Geometric parameters (Å, º) top
C1—O11.489 (2)C6—H6A0.96
C1—C41.517 (3)C6—H6B0.96
C1—C31.520 (3)C6—H6C0.96
C1—C21.523 (3)C7—O31.235 (3)
C2—H2A0.96C7—N31.346 (3)
C2—H2B0.96N3—C81.448 (3)
C2—H2C0.96N3—H30.86
C3—H3A0.96C8—C101.521 (3)
C3—H3B0.96C8—C91.524 (3)
C3—H3C0.96C8—H80.98
C4—H4A0.96C9—H9A0.96
C4—H4B0.96C9—H9B0.96
C4—H4C0.96C9—H9C0.96
O1—C51.344 (2)C10—O41.210 (3)
C5—O21.215 (3)C10—O51.334 (3)
C5—N11.363 (3)O5—C111.450 (3)
N1—N21.393 (2)C11—H11A0.96
N1—H10.86C11—H11B0.96
N2—C71.392 (3)C11—H11C0.96
N2—C61.463 (3)
O1—C1—C4109.01 (17)N2—C6—H6A109.5
O1—C1—C3110.01 (17)N2—C6—H6B109.5
C4—C1—C3113.9 (2)H6A—C6—H6B109.5
O1—C1—C2102.26 (17)N2—C6—H6C109.5
C4—C1—C2110.7 (2)H6A—C6—H6C109.5
C3—C1—C2110.32 (19)H6B—C6—H6C109.5
C1—C2—H2A109.5O3—C7—N3122.0 (2)
C1—C2—H2B109.5O3—C7—N2121.24 (19)
H2A—C2—H2B109.5N3—C7—N2116.72 (18)
C1—C2—H2C109.5C7—N3—C8118.14 (18)
H2A—C2—H2C109.5C7—N3—H3120.9
H2B—C2—H2C109.5C8—N3—H3120.9
C1—C3—H3A109.5N3—C8—C10113.75 (18)
C1—C3—H3B109.5N3—C8—C9109.84 (18)
H3A—C3—H3B109.5C10—C8—C9109.64 (19)
C1—C3—H3C109.5N3—C8—H8107.8
H3A—C3—H3C109.5C10—C8—H8107.8
H3B—C3—H3C109.5C9—C8—H8107.8
C1—C4—H4A109.5C8—C9—H9A109.5
C1—C4—H4B109.5C8—C9—H9B109.5
H4A—C4—H4B109.5H9A—C9—H9B109.5
C1—C4—H4C109.5C8—C9—H9C109.5
H4A—C4—H4C109.5H9A—C9—H9C109.5
H4B—C4—H4C109.5H9B—C9—H9C109.5
C5—O1—C1119.40 (17)O4—C10—O5124.0 (2)
O2—C5—O1126.7 (2)O4—C10—C8122.3 (2)
O2—C5—N1123.66 (19)O5—C10—C8113.58 (18)
O1—C5—N1109.64 (18)C10—O5—C11114.71 (18)
C5—N1—N2118.43 (18)O5—C11—H11A109.5
C5—N1—H1120.8O5—C11—H11B109.5
N2—N1—H1120.8H11A—C11—H11B109.5
C7—N2—N1116.51 (17)O5—C11—H11C109.5
C7—N2—C6118.49 (18)H11A—C11—H11C109.5
N1—N2—C6114.46 (17)H11B—C11—H11C109.5
C4—C1—O1—C565.6 (2)C6—N2—C7—N3168.95 (18)
C3—C1—O1—C560.0 (2)O3—C7—N3—C83.2 (3)
C2—C1—O1—C5177.16 (18)N2—C7—N3—C8179.09 (18)
C1—O1—C5—O21.3 (3)C7—N3—C8—C1060.0 (3)
C1—O1—C5—N1177.86 (17)C7—N3—C8—C9176.65 (19)
O2—C5—N1—N26.4 (3)N3—C8—C10—O4153.4 (2)
O1—C5—N1—N2174.45 (17)C9—C8—C10—O483.2 (3)
C5—N1—N2—C768.4 (2)N3—C8—C10—O530.0 (3)
C5—N1—N2—C675.9 (2)C9—C8—C10—O593.5 (2)
N1—N2—C7—O3156.14 (19)O4—C10—O5—C113.6 (3)
C6—N2—C7—O313.3 (3)C8—C10—O5—C11179.84 (19)
N1—N2—C7—N326.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.182.972 (2)153
N3—H3···O3i0.862.032.850 (2)159
C6—H6A···O4ii0.962.553.303 (3)136
C11—H11B···O4iii0.962.413.346 (3)164
Symmetry codes: (i) y, x+1, z1/4; (ii) x1, y, z; (iii) y, x+2, z1/4.

Experimental details

Crystal data
Chemical formulaC11H21N3O5
Mr275.31
Crystal system, space groupTetragonal, P41
Temperature (K)100
a, c (Å)9.3194 (4), 17.4420 (8)
V3)1514.86 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerNonis KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14534, 1847, 1806
Rint0.049
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.12
No. of reflections1847
No. of parameters178
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: COLLECT (Bruker, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.182.972 (2)152.9
N3—H3···O3i0.862.032.850 (2)158.7
C6—H6A···O4ii0.962.553.303 (3)135.6
C11—H11B···O4iii0.962.413.346 (3)164.3
Symmetry codes: (i) y, x+1, z1/4; (ii) x1, y, z; (iii) y, x+2, z1/4.
 

Acknowledgements

The authors thank the National Research Agency (ANR) for financial support (No. NT05_4_42848). Support from Nancy Université for the X-ray measurements is gratefully acknowledged

References

First citationAbbas, C., Pickaert, G., Didierjean, C., Grégoire, B. J. & Vanderesse, R. (2009). Tetrahedron Lett. 50, 4158–4160.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAndré, F., Boussard, G., Bayeul, D., Didierjean, C., Aubry, A. & Marraud, M. (1997). J. Pept. Res. 49, 556–562.  PubMed Web of Science Google Scholar
First citationAndré, F., Marraud, M., Boussard, G., Didierjean, C. & Aubry, A. (1996). Tetrahedron Lett. 37, 183–186.  Google Scholar
First citationBenatalah, Z., Aubry, A., Boussard, G. & Marraud, M. (1991). Int. J. Pept. Protein Res. 38, 603–605.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBouillon, I., Brosse, N., Vanderesse, R. & Jamart-Grégoire, B. (2004). Tetrahedron Lett. 45, 3569–3572.  Web of Science CrossRef CAS Google Scholar
First citationBrosse, N., Pinto, M.-F., Bodiguel, J. & Jamart-Gregoire, B. (2001). J. Org. Chem. 66, 2869–2873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120-126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499–506.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMajer, P. & Randad, R. S. (1994). J. Org. Chem. 59, 1937–1938.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds