metal-organic compounds
[4-(2-Aminoethyl)piperazin-1-ium]trichloridocopper(II) monohydrate
aLaboratoire de Sciences de Matériaux et d'Environnement, Faculté des Sciences de SFAX, BP 802, 3018 SFAX, Tunisia
*Correspondence e-mail: fatmazouari2003@yahoo.fr
In the title compound, [CuCl3(C6H16N3)]·H2O, the copper(II) ion is five-coordinated by two N atoms from the bidentate 4-(2-aminoethyl)piperazin-1-ium cation and three chloride ions in a distorted square-pyramidal environment. Intermolecular N—H⋯Cl and O—H⋯Cl hydrogen bonds build up an intricate three-dimensional network.
Related literature
For background information on polydentate ligands with nitrogen donor atoms, see: Riggio et al. (2001); Xiang et al. (2007); Gokhale et al. (2001). The copper(II) ion, owing to the 'plasticity' of the coordination sphere, forms complexes of 4–6, with a variety of irregular geometries, see: Fujisawa et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809046121/dn2503sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046121/dn2503Isup2.hkl
To a solution of 1-(2-aminoethyl) piperazine compound (10 mmol) in chlorhydric acid (35 ml) was added a solution of CuCl2.2H2O(10 mmol) in acetone (15 ml). After a few days to 3 weeks, the product separates as crystals, which were isolated by filtration and dried in air. The new compound show satisfactory elemental analyses.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stages of they were treated as riding on the O atom.Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probabilit level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line. | |
Fig. 2. Partial packing view showing the intricated N—H···Cl and O—H···Cl network. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x - 1, y, z] |
[CuCl3(C6H16N3)]·H2O | F(000) = 652 |
Mr = 318.13 | Dx = 1.727 Mg m−3 |
Monoclinic, P21/n | Melting point: 455 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0540 (6) Å | Cell parameters from 4604 reflections |
b = 14.8840 (13) Å | θ = 3.1–33.0° |
c = 9.1040 (2) Å | µ = 2.41 mm−1 |
β = 94.019 (5)° | T = 293 K |
V = 1223.84 (14) Å3 | Prism, colourless |
Z = 4 | 0.35 × 0.21 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 4410 independent reflections |
Radiation source: fine-focus sealed tube | 3444 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 33.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −13→13 |
Tmin = 0.541, Tmax = 0.685 | k = −20→22 |
21677 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0308P)2 + 1.5885P] where P = (Fo2 + 2Fc2)/3 |
4410 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
[CuCl3(C6H16N3)]·H2O | V = 1223.84 (14) Å3 |
Mr = 318.13 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0540 (6) Å | µ = 2.41 mm−1 |
b = 14.8840 (13) Å | T = 293 K |
c = 9.1040 (2) Å | 0.35 × 0.21 × 0.15 mm |
β = 94.019 (5)° |
Bruker SMART CCD area-detector diffractometer | 4410 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3444 reflections with I > 2σ(I) |
Tmin = 0.541, Tmax = 0.685 | Rint = 0.032 |
21677 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.75 e Å−3 |
4410 reflections | Δρmin = −0.73 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.52502 (3) | 0.275723 (19) | 0.26008 (3) | 0.02535 (8) | |
Cl1 | 0.69453 (8) | 0.34628 (4) | 0.12625 (7) | 0.03484 (14) | |
Cl2 | 0.35774 (8) | 0.39523 (4) | 0.23087 (8) | 0.03722 (15) | |
Cl3 | 0.60236 (8) | 0.32232 (5) | 0.53095 (8) | 0.04205 (17) | |
N1 | 0.3558 (2) | 0.19697 (14) | 0.3082 (2) | 0.0301 (4) | |
H1A | 0.3237 | 0.2139 | 0.3954 | 0.036* | |
H1B | 0.2807 | 0.2044 | 0.2391 | 0.036* | |
N2 | 0.6475 (2) | 0.15459 (12) | 0.2700 (2) | 0.0238 (4) | |
N3 | 0.8947 (3) | 0.04353 (15) | 0.1831 (3) | 0.0373 (5) | |
H3A | 0.9412 | −0.0099 | 0.1866 | 0.045* | |
H3B | 0.9465 | 0.0810 | 0.1285 | 0.045* | |
C1 | 0.3973 (3) | 0.10108 (17) | 0.3155 (3) | 0.0339 (5) | |
H11 | 0.3787 | 0.0734 | 0.2196 | 0.041* | |
H12 | 0.3389 | 0.0699 | 0.3850 | 0.041* | |
C2 | 0.5603 (3) | 0.09485 (16) | 0.3645 (3) | 0.0305 (5) | |
H21 | 0.5758 | 0.1131 | 0.4667 | 0.037* | |
H22 | 0.5936 | 0.0332 | 0.3565 | 0.037* | |
C3 | 0.8026 (3) | 0.16627 (16) | 0.3349 (3) | 0.0308 (5) | |
H31 | 0.7998 | 0.1878 | 0.4352 | 0.037* | |
H32 | 0.8515 | 0.2117 | 0.2792 | 0.037* | |
C4 | 0.8927 (3) | 0.08025 (18) | 0.3355 (3) | 0.0353 (6) | |
H41 | 0.9932 | 0.0923 | 0.3744 | 0.042* | |
H42 | 0.8500 | 0.0362 | 0.3987 | 0.042* | |
C5 | 0.7427 (3) | 0.03183 (17) | 0.1101 (3) | 0.0344 (6) | |
H51 | 0.6915 | −0.0157 | 0.1589 | 0.041* | |
H52 | 0.7497 | 0.0147 | 0.0081 | 0.041* | |
C6 | 0.6557 (3) | 0.11889 (17) | 0.1175 (3) | 0.0297 (5) | |
H61 | 0.7012 | 0.1639 | 0.0583 | 0.036* | |
H62 | 0.5559 | 0.1089 | 0.0748 | 0.036* | |
O1W | 0.0185 (4) | 0.3850 (3) | 0.2878 (5) | 0.0994 (12) | |
H1 | 0.1193 | 0.3767 | 0.2606 | 0.149* | |
H2 | −0.0540 | 0.3497 | 0.2295 | 0.149* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02915 (15) | 0.02000 (13) | 0.02711 (15) | 0.00087 (10) | 0.00348 (10) | 0.00021 (10) |
Cl1 | 0.0433 (4) | 0.0240 (3) | 0.0390 (3) | 0.0025 (2) | 0.0153 (3) | 0.0055 (2) |
Cl2 | 0.0342 (3) | 0.0270 (3) | 0.0499 (4) | 0.0043 (2) | −0.0007 (3) | −0.0008 (3) |
Cl3 | 0.0426 (4) | 0.0499 (4) | 0.0325 (3) | 0.0124 (3) | −0.0058 (3) | −0.0154 (3) |
N1 | 0.0291 (10) | 0.0298 (10) | 0.0315 (10) | −0.0012 (8) | 0.0021 (8) | 0.0019 (8) |
N2 | 0.0308 (10) | 0.0188 (8) | 0.0220 (8) | 0.0011 (7) | 0.0029 (7) | 0.0017 (6) |
N3 | 0.0422 (13) | 0.0230 (9) | 0.0489 (14) | 0.0071 (9) | 0.0190 (11) | 0.0034 (9) |
C1 | 0.0362 (13) | 0.0263 (11) | 0.0402 (14) | −0.0064 (10) | 0.0097 (11) | 0.0001 (10) |
C2 | 0.0397 (14) | 0.0253 (10) | 0.0271 (11) | 0.0018 (9) | 0.0071 (10) | 0.0056 (9) |
C3 | 0.0340 (13) | 0.0228 (10) | 0.0352 (13) | 0.0000 (9) | −0.0007 (10) | −0.0031 (9) |
C4 | 0.0335 (13) | 0.0278 (11) | 0.0440 (15) | 0.0056 (10) | −0.0023 (11) | 0.0010 (10) |
C5 | 0.0496 (16) | 0.0239 (11) | 0.0311 (12) | −0.0004 (10) | 0.0128 (11) | −0.0036 (9) |
C6 | 0.0418 (14) | 0.0271 (11) | 0.0204 (10) | 0.0006 (10) | 0.0035 (9) | −0.0004 (8) |
O1W | 0.072 (2) | 0.120 (3) | 0.105 (3) | −0.002 (2) | 0.002 (2) | −0.018 (2) |
Cu1—N1 | 2.002 (2) | C1—H11 | 0.9700 |
Cu1—N2 | 2.1153 (19) | C1—H12 | 0.9700 |
Cu1—Cl1 | 2.2814 (7) | C2—H21 | 0.9700 |
Cu1—Cl2 | 2.3392 (7) | C2—H22 | 0.9700 |
Cu1—Cl3 | 2.6097 (7) | C3—C4 | 1.518 (4) |
N1—C1 | 1.476 (3) | C3—H31 | 0.9700 |
N1—H1A | 0.9000 | C3—H32 | 0.9700 |
N1—H1B | 0.9000 | C4—H41 | 0.9700 |
N2—C6 | 1.493 (3) | C4—H42 | 0.9700 |
N2—C3 | 1.495 (3) | C5—C6 | 1.520 (4) |
N2—C2 | 1.500 (3) | C5—H51 | 0.9700 |
N3—C4 | 1.493 (4) | C5—H52 | 0.9700 |
N3—C5 | 1.496 (4) | C6—H61 | 0.9700 |
N3—H3A | 0.9000 | C6—H62 | 0.9700 |
N3—H3B | 0.9000 | O1W—H1 | 0.9701 |
C1—C2 | 1.514 (4) | O1W—H2 | 0.9694 |
N1—Cu1—N2 | 84.19 (8) | H11—C1—H12 | 108.4 |
N1—Cu1—Cl1 | 160.09 (7) | N2—C2—C1 | 109.6 (2) |
N2—Cu1—Cl1 | 92.56 (6) | N2—C2—H21 | 109.7 |
N1—Cu1—Cl2 | 88.32 (7) | C1—C2—H21 | 109.7 |
N2—Cu1—Cl2 | 170.50 (6) | N2—C2—H22 | 109.7 |
Cl1—Cu1—Cl2 | 92.50 (3) | C1—C2—H22 | 109.7 |
N1—Cu1—Cl3 | 96.18 (7) | H21—C2—H22 | 108.2 |
N2—Cu1—Cl3 | 94.65 (6) | N2—C3—C4 | 113.1 (2) |
Cl1—Cu1—Cl3 | 103.67 (3) | N2—C3—H31 | 109.0 |
Cl2—Cu1—Cl3 | 91.95 (3) | C4—C3—H31 | 109.0 |
C1—N1—Cu1 | 112.31 (16) | N2—C3—H32 | 109.0 |
C1—N1—H1A | 109.1 | C4—C3—H32 | 109.0 |
Cu1—N1—H1A | 109.1 | H31—C3—H32 | 107.8 |
C1—N1—H1B | 109.1 | N3—C4—C3 | 110.3 (2) |
Cu1—N1—H1B | 109.1 | N3—C4—H41 | 109.6 |
H1A—N1—H1B | 107.9 | C3—C4—H41 | 109.6 |
C6—N2—C3 | 107.62 (19) | N3—C4—H42 | 109.6 |
C6—N2—C2 | 112.64 (19) | C3—C4—H42 | 109.6 |
C3—N2—C2 | 111.08 (19) | H41—C4—H42 | 108.1 |
C6—N2—Cu1 | 108.90 (14) | N3—C5—C6 | 110.1 (2) |
C3—N2—Cu1 | 113.13 (14) | N3—C5—H51 | 109.6 |
C2—N2—Cu1 | 103.53 (14) | C6—C5—H51 | 109.6 |
C4—N3—C5 | 112.6 (2) | N3—C5—H52 | 109.6 |
C4—N3—H3A | 109.1 | C6—C5—H52 | 109.6 |
C5—N3—H3A | 109.1 | H51—C5—H52 | 108.1 |
C4—N3—H3B | 109.1 | N2—C6—C5 | 113.8 (2) |
C5—N3—H3B | 109.1 | N2—C6—H61 | 108.8 |
H3A—N3—H3B | 107.8 | C5—C6—H61 | 108.8 |
N1—C1—C2 | 108.2 (2) | N2—C6—H62 | 108.8 |
N1—C1—H11 | 110.1 | C5—C6—H62 | 108.8 |
C2—C1—H11 | 110.1 | H61—C6—H62 | 107.7 |
N1—C1—H12 | 110.1 | H1—O1W—H2 | 113.8 |
C2—C1—H12 | 110.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1···Cl2 | 0.97 | 2.21 | 3.154 (4) | 164 |
O1W—H2···Cl1i | 0.97 | 2.40 | 3.239 (4) | 144 |
N1—H1A···Cl1ii | 0.90 | 2.63 | 3.395 (2) | 143 |
N1—H1B···Cl3iii | 0.90 | 2.43 | 3.302 (2) | 162 |
N3—H3A···Cl2iv | 0.90 | 2.38 | 3.204 (2) | 152 |
N3—H3B···Cl3v | 0.90 | 2.24 | 3.131 (2) | 169 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl3(C6H16N3)]·H2O |
Mr | 318.13 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.0540 (6), 14.8840 (13), 9.1040 (2) |
β (°) | 94.019 (5) |
V (Å3) | 1223.84 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.41 |
Crystal size (mm) | 0.35 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.541, 0.685 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21677, 4410, 3444 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.766 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.19 |
No. of reflections | 4410 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −0.73 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1···Cl2 | 0.97 | 2.21 | 3.154 (4) | 163.6 |
O1W—H2···Cl1i | 0.97 | 2.40 | 3.239 (4) | 144.4 |
N1—H1A···Cl1ii | 0.90 | 2.63 | 3.395 (2) | 142.9 |
N1—H1B···Cl3iii | 0.90 | 2.43 | 3.302 (2) | 162.0 |
N3—H3A···Cl2iv | 0.90 | 2.38 | 3.204 (2) | 151.7 |
N3—H3B···Cl3v | 0.90 | 2.24 | 3.131 (2) | 169.4 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+1/2, z−1/2. |
References
Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fujisawa, K., Kanda, R., Miyashita, Y. & Okamoto, K. (2008). Polyhedron, 27, 1432–1446. Web of Science CSD CrossRef CAS Google Scholar
Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001). Inorg. Chim. Acta, 319, 90–94. Web of Science CSD CrossRef CAS Google Scholar
Riggio, I., Van Albada, G. A., Ellis, D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659–2666. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiang, J., Yin, Y., Mei, P. & Li, Q. (2007). Inorg. Chem. Commun. 10, 610–613. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polydentate ligands with nitrogen donor atoms are largely employed in mimicking the environnement of the copper in models of biological interest, whose coordination environment is provided by nitrogen atoms of the ligand, plus one or more exogeneous ligands (Riggio et al., 2001; Xiang et al., 2007; Gokhale et al., 2001). It is of current interest to correlate the flexibility of the model ligand and its sterical hindrance with the geometry of the complex. The copper(II) ion, owing to the well known 'plasticity' of the coordination sphere, forms complexes of co-ordination number 4–6, with a variety of irregular geometries (Fujisawa et al., 2008), both the anions and the solvent playing often a vital role on the stoichiometry and stereochemistry of the complexes (Xiang et al., 2007). In this paper, we report on the synthesis and the crystal structure determinationof N2 bidentate copper(II) complex 1-(2-ammoniumethyl) piperazinium trichlorocuprate(II)monohydrate (Scheme).
The structure of the title compound consists of discrete copper(II) neutral complexes with the metal atom five-coordinated to two N atoms from the bidentate 1-(2-aminoethyl) piperazine and three chlorine atoms in a square pyramidal environment (Fig. 1). The square plane is defined by two N atoms from organic cation and the more strongly bonded Cl1 and Cl2 chlorine, the apical position is occupied by the Cl3 chlorine atom. The Cu—Cl3 distance 2.6095 (8)Å is significantly longer than the normal bond length, which reflects the weak axial interactions as expected for Jahn-Teller distorted copper (II) complexes. The value of structural parameter τ is 0.17, showing a distorted square pyramidal structure, where τ is defined as τ = (α-β)/60°, where α and β are the largest angles (α> β) around a five coordinated metal center (τ is equal to 0 for an ideal square pyramidal geometry).
The intermolecular hydrogen bonds, N—H···Cl and O—H···Cl, build up an intricated three dimensionnal network (Table 1, Fig. 2).