metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(2-Amino­ethyl)piperazin-1-ium]tri­chloridocopper(II) monohydrate

aLaboratoire de Sciences de Matériaux et d'Environnement, Faculté des Sciences de SFAX, BP 802, 3018 SFAX, Tunisia
*Correspondence e-mail: fatmazouari2003@yahoo.fr

(Received 16 October 2009; accepted 2 November 2009; online 7 November 2009)

In the title compound, [CuCl3(C6H16N3)]·H2O, the copper(II) ion is five-coordinated by two N atoms from the bidentate 4-(2-amino­ethyl)piperazin-1-ium cation and three chloride ions in a distorted square-pyramidal environment. Inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds build up an intricate three-dimensional network.

Related literature

For background information on polydentate ligands with nitro­gen donor atoms, see: Riggio et al. (2001[Riggio, I., Van Albada, G. A., Ellis, D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659-2666.]); Xiang et al. (2007[Xiang, J., Yin, Y., Mei, P. & Li, Q. (2007). Inorg. Chem. Commun. 10, 610-613.]); Gokhale et al. (2001[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001). Inorg. Chim. Acta, 319, 90-94.]). The copper(II) ion, owing to the 'plasticity' of the coordination sphere, forms complexes of coordination number 4–6, with a variety of irregular geometries, see: Fujisawa et al. (2008[Fujisawa, K., Kanda, R., Miyashita, Y. & Okamoto, K. (2008). Polyhedron, 27, 1432-1446.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl3(C6H16N3)]·H2O

  • Mr = 318.13

  • Monoclinic, P 21 /n

  • a = 9.0540 (6) Å

  • b = 14.8840 (13) Å

  • c = 9.1040 (2) Å

  • β = 94.019 (5)°

  • V = 1223.84 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 293 K

  • 0.35 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker et al., 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.685

  • 21677 measured reflections

  • 4410 independent reflections

  • 3444 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.19

  • 4410 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯Cl2 0.97 2.21 3.154 (4) 164
O1W—H2⋯Cl1i 0.97 2.40 3.239 (4) 144
N1—H1A⋯Cl1ii 0.90 2.63 3.395 (2) 143
N1—H1B⋯Cl3iii 0.90 2.43 3.302 (2) 162
N3—H3A⋯Cl2iv 0.90 2.38 3.204 (2) 152
N3—H3B⋯Cl3v 0.90 2.24 3.131 (2) 169
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polydentate ligands with nitrogen donor atoms are largely employed in mimicking the environnement of the copper in models of biological interest, whose coordination environment is provided by nitrogen atoms of the ligand, plus one or more exogeneous ligands (Riggio et al., 2001; Xiang et al., 2007; Gokhale et al., 2001). It is of current interest to correlate the flexibility of the model ligand and its sterical hindrance with the geometry of the complex. The copper(II) ion, owing to the well known 'plasticity' of the coordination sphere, forms complexes of co-ordination number 4–6, with a variety of irregular geometries (Fujisawa et al., 2008), both the anions and the solvent playing often a vital role on the stoichiometry and stereochemistry of the complexes (Xiang et al., 2007). In this paper, we report on the synthesis and the crystal structure determinationof N2 bidentate copper(II) complex 1-(2-ammoniumethyl) piperazinium trichlorocuprate(II)monohydrate (Scheme).

The structure of the title compound consists of discrete copper(II) neutral complexes with the metal atom five-coordinated to two N atoms from the bidentate 1-(2-aminoethyl) piperazine and three chlorine atoms in a square pyramidal environment (Fig. 1). The square plane is defined by two N atoms from organic cation and the more strongly bonded Cl1 and Cl2 chlorine, the apical position is occupied by the Cl3 chlorine atom. The Cu—Cl3 distance 2.6095 (8)Å is significantly longer than the normal bond length, which reflects the weak axial interactions as expected for Jahn-Teller distorted copper (II) complexes. The value of structural parameter τ is 0.17, showing a distorted square pyramidal structure, where τ is defined as τ = (α-β)/60°, where α and β are the largest angles (α> β) around a five coordinated metal center (τ is equal to 0 for an ideal square pyramidal geometry).

The intermolecular hydrogen bonds, N—H···Cl and O—H···Cl, build up an intricated three dimensionnal network (Table 1, Fig. 2).

Related literature top

For background information on polydentate ligands with nitrogen donor atoms, see: Riggio et al. (2001); Xiang et al. (2007); Gokhale et al. (2001). For the copper(II) ion, see: Fujisawa et al. (2008).

Experimental top

To a solution of 1-(2-aminoethyl) piperazine compound (10 mmol) in chlorhydric acid (35 ml) was added a solution of CuCl2.2H2O(10 mmol) in acetone (15 ml). After a few days to 3 weeks, the product separates as crystals, which were isolated by filtration and dried in air. The new compound show satisfactory elemental analyses.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stages of refinement, they were treated as riding on the O atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probabilit level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the intricated N—H···Cl and O—H···Cl network. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x - 1, y, z]
[4-(2-Aminoethyl)piperazin-1-ium]trichloridocopper(II) monohydrate top
Crystal data top
[CuCl3(C6H16N3)]·H2OF(000) = 652
Mr = 318.13Dx = 1.727 Mg m3
Monoclinic, P21/nMelting point: 455 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.0540 (6) ÅCell parameters from 4604 reflections
b = 14.8840 (13) Åθ = 3.1–33.0°
c = 9.1040 (2) ŵ = 2.41 mm1
β = 94.019 (5)°T = 293 K
V = 1223.84 (14) Å3Prism, colourless
Z = 40.35 × 0.21 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4410 independent reflections
Radiation source: fine-focus sealed tube3444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 33.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1313
Tmin = 0.541, Tmax = 0.685k = 2022
21677 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0308P)2 + 1.5885P]
where P = (Fo2 + 2Fc2)/3
4410 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[CuCl3(C6H16N3)]·H2OV = 1223.84 (14) Å3
Mr = 318.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0540 (6) ŵ = 2.41 mm1
b = 14.8840 (13) ÅT = 293 K
c = 9.1040 (2) Å0.35 × 0.21 × 0.15 mm
β = 94.019 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3444 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.685Rint = 0.032
21677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.19Δρmax = 0.75 e Å3
4410 reflectionsΔρmin = 0.73 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52502 (3)0.275723 (19)0.26008 (3)0.02535 (8)
Cl10.69453 (8)0.34628 (4)0.12625 (7)0.03484 (14)
Cl20.35774 (8)0.39523 (4)0.23087 (8)0.03722 (15)
Cl30.60236 (8)0.32232 (5)0.53095 (8)0.04205 (17)
N10.3558 (2)0.19697 (14)0.3082 (2)0.0301 (4)
H1A0.32370.21390.39540.036*
H1B0.28070.20440.23910.036*
N20.6475 (2)0.15459 (12)0.2700 (2)0.0238 (4)
N30.8947 (3)0.04353 (15)0.1831 (3)0.0373 (5)
H3A0.94120.00990.18660.045*
H3B0.94650.08100.12850.045*
C10.3973 (3)0.10108 (17)0.3155 (3)0.0339 (5)
H110.37870.07340.21960.041*
H120.33890.06990.38500.041*
C20.5603 (3)0.09485 (16)0.3645 (3)0.0305 (5)
H210.57580.11310.46670.037*
H220.59360.03320.35650.037*
C30.8026 (3)0.16627 (16)0.3349 (3)0.0308 (5)
H310.79980.18780.43520.037*
H320.85150.21170.27920.037*
C40.8927 (3)0.08025 (18)0.3355 (3)0.0353 (6)
H410.99320.09230.37440.042*
H420.85000.03620.39870.042*
C50.7427 (3)0.03183 (17)0.1101 (3)0.0344 (6)
H510.69150.01570.15890.041*
H520.74970.01470.00810.041*
C60.6557 (3)0.11889 (17)0.1175 (3)0.0297 (5)
H610.70120.16390.05830.036*
H620.55590.10890.07480.036*
O1W0.0185 (4)0.3850 (3)0.2878 (5)0.0994 (12)
H10.11930.37670.26060.149*
H20.05400.34970.22950.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02915 (15)0.02000 (13)0.02711 (15)0.00087 (10)0.00348 (10)0.00021 (10)
Cl10.0433 (4)0.0240 (3)0.0390 (3)0.0025 (2)0.0153 (3)0.0055 (2)
Cl20.0342 (3)0.0270 (3)0.0499 (4)0.0043 (2)0.0007 (3)0.0008 (3)
Cl30.0426 (4)0.0499 (4)0.0325 (3)0.0124 (3)0.0058 (3)0.0154 (3)
N10.0291 (10)0.0298 (10)0.0315 (10)0.0012 (8)0.0021 (8)0.0019 (8)
N20.0308 (10)0.0188 (8)0.0220 (8)0.0011 (7)0.0029 (7)0.0017 (6)
N30.0422 (13)0.0230 (9)0.0489 (14)0.0071 (9)0.0190 (11)0.0034 (9)
C10.0362 (13)0.0263 (11)0.0402 (14)0.0064 (10)0.0097 (11)0.0001 (10)
C20.0397 (14)0.0253 (10)0.0271 (11)0.0018 (9)0.0071 (10)0.0056 (9)
C30.0340 (13)0.0228 (10)0.0352 (13)0.0000 (9)0.0007 (10)0.0031 (9)
C40.0335 (13)0.0278 (11)0.0440 (15)0.0056 (10)0.0023 (11)0.0010 (10)
C50.0496 (16)0.0239 (11)0.0311 (12)0.0004 (10)0.0128 (11)0.0036 (9)
C60.0418 (14)0.0271 (11)0.0204 (10)0.0006 (10)0.0035 (9)0.0004 (8)
O1W0.072 (2)0.120 (3)0.105 (3)0.002 (2)0.002 (2)0.018 (2)
Geometric parameters (Å, º) top
Cu1—N12.002 (2)C1—H110.9700
Cu1—N22.1153 (19)C1—H120.9700
Cu1—Cl12.2814 (7)C2—H210.9700
Cu1—Cl22.3392 (7)C2—H220.9700
Cu1—Cl32.6097 (7)C3—C41.518 (4)
N1—C11.476 (3)C3—H310.9700
N1—H1A0.9000C3—H320.9700
N1—H1B0.9000C4—H410.9700
N2—C61.493 (3)C4—H420.9700
N2—C31.495 (3)C5—C61.520 (4)
N2—C21.500 (3)C5—H510.9700
N3—C41.493 (4)C5—H520.9700
N3—C51.496 (4)C6—H610.9700
N3—H3A0.9000C6—H620.9700
N3—H3B0.9000O1W—H10.9701
C1—C21.514 (4)O1W—H20.9694
N1—Cu1—N284.19 (8)H11—C1—H12108.4
N1—Cu1—Cl1160.09 (7)N2—C2—C1109.6 (2)
N2—Cu1—Cl192.56 (6)N2—C2—H21109.7
N1—Cu1—Cl288.32 (7)C1—C2—H21109.7
N2—Cu1—Cl2170.50 (6)N2—C2—H22109.7
Cl1—Cu1—Cl292.50 (3)C1—C2—H22109.7
N1—Cu1—Cl396.18 (7)H21—C2—H22108.2
N2—Cu1—Cl394.65 (6)N2—C3—C4113.1 (2)
Cl1—Cu1—Cl3103.67 (3)N2—C3—H31109.0
Cl2—Cu1—Cl391.95 (3)C4—C3—H31109.0
C1—N1—Cu1112.31 (16)N2—C3—H32109.0
C1—N1—H1A109.1C4—C3—H32109.0
Cu1—N1—H1A109.1H31—C3—H32107.8
C1—N1—H1B109.1N3—C4—C3110.3 (2)
Cu1—N1—H1B109.1N3—C4—H41109.6
H1A—N1—H1B107.9C3—C4—H41109.6
C6—N2—C3107.62 (19)N3—C4—H42109.6
C6—N2—C2112.64 (19)C3—C4—H42109.6
C3—N2—C2111.08 (19)H41—C4—H42108.1
C6—N2—Cu1108.90 (14)N3—C5—C6110.1 (2)
C3—N2—Cu1113.13 (14)N3—C5—H51109.6
C2—N2—Cu1103.53 (14)C6—C5—H51109.6
C4—N3—C5112.6 (2)N3—C5—H52109.6
C4—N3—H3A109.1C6—C5—H52109.6
C5—N3—H3A109.1H51—C5—H52108.1
C4—N3—H3B109.1N2—C6—C5113.8 (2)
C5—N3—H3B109.1N2—C6—H61108.8
H3A—N3—H3B107.8C5—C6—H61108.8
N1—C1—C2108.2 (2)N2—C6—H62108.8
N1—C1—H11110.1C5—C6—H62108.8
C2—C1—H11110.1H61—C6—H62107.7
N1—C1—H12110.1H1—O1W—H2113.8
C2—C1—H12110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Cl20.972.213.154 (4)164
O1W—H2···Cl1i0.972.403.239 (4)144
N1—H1A···Cl1ii0.902.633.395 (2)143
N1—H1B···Cl3iii0.902.433.302 (2)162
N3—H3A···Cl2iv0.902.383.204 (2)152
N3—H3B···Cl3v0.902.243.131 (2)169
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuCl3(C6H16N3)]·H2O
Mr318.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0540 (6), 14.8840 (13), 9.1040 (2)
β (°) 94.019 (5)
V3)1223.84 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.35 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.541, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
21677, 4410, 3444
Rint0.032
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.19
No. of reflections4410
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.73

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Cl20.972.213.154 (4)163.6
O1W—H2···Cl1i0.972.403.239 (4)144.4
N1—H1A···Cl1ii0.902.633.395 (2)142.9
N1—H1B···Cl3iii0.902.433.302 (2)162.0
N3—H3A···Cl2iv0.902.383.204 (2)151.7
N3—H3B···Cl3v0.902.243.131 (2)169.4
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z1/2.
 

References

First citationBruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujisawa, K., Kanda, R., Miyashita, Y. & Okamoto, K. (2008). Polyhedron, 27, 1432–1446.  Web of Science CSD CrossRef CAS Google Scholar
First citationGokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001). Inorg. Chim. Acta, 319, 90–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationRiggio, I., Van Albada, G. A., Ellis, D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659–2666.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, J., Yin, Y., Mei, P. & Li, Q. (2007). Inorg. Chem. Commun. 10, 610–613.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds