organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-p-Tolyl­isoxazol-5-yl)cyclo­hexa­nol

aLaboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Département de Chimie, Faculté des Sciences BP, 1014 Rabat, Morocco, bLaboratoire de Chimie des Molécules Bioactives et des Arômes, UMR-CNRS 6001, Institut de Chimie de Nice, Université de Nice-Sophia Antipolis, Parc Valrose, F-06108 Nice Cédex 2, France, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, 4, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@fsr.ac.ma

(Received 20 October 2009; accepted 27 October 2009; online 4 November 2009)

The title compound, C16H19NO2, contains two mol­ecules in the asymmetric unit. Each mol­ecule is composed of three inter­connected rings, two essentially planar rings, viz. the isoxazole and the methyl­benzyl aromatic ring [maximum deviations of 0.0027 (13) and 0.0031 (19) Å from the isoxazole and methylbenzyl ring planes, respectively, in the first molecule, 0.0018 (12) and 0.019 (2) Å in the second molecule], and one cyclo­hexa­nol ring having a chair conformation. Although the two mol­ecules have similar bond distances and angles, they differ in the orientation of the cyclo­hexa­nol ring with respect to the tolyl­isoxazole unit. In the first mol­ecule, the dihedral angle between the isoxazole and methyl­benzyl rings is 22.03 (8)° and between the isoxazole and cyclo­hexa­nol rings is 30.15 (8)°. The corresponding values in the second mol­ecule are 6.13 (10) and 88.44 (8)°, respectively. In the crystal, the molecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, building up a zigzag chain parallel to the a axis.

Related literature

For isoxazole derivatives as building blocks in organic synthesis and combinatorial chemistry, see: Tu et al. (2009[Tu, S. J., Zhang, X. H., Han, Z. G., Cao, X. D., Wu, S. S., Yan, S., Hao, W. J., Zhang, G. & Ma, N. (2009). J. Comb. Chem. 11, 428-32.]); Tang et al. (2009[Tang, S., He, J., Sun, Y., Liuer He, L. & She, X. (2009). Org. Lett. 11, 3982-3983.]). For their biological activity, see: Deng et al. (2009[Deng, B. L., Zhao, Y., Hartman, T. L., Watson, K., Buckheit, R. W. Jr, Pannecouque, C., De Clercq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210-1214.]); Kozikowski et al. (2008[Kozikowski, A. P., Tapadar, S., Luchini, D. N., Kim, K. H. & Billadeau, D. D. (2008). J. Med. Chem. 51, 4370-4373.]); Lee et al. (2009[Lee, Y. S., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126-1128.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2

  • Mr = 257.32

  • Orthorhombic, P c a 21

  • a = 10.9404 (3) Å

  • b = 9.7136 (3) Å

  • c = 26.9207 (7) Å

  • V = 2860.88 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.10 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: none

  • 87116 measured reflections

  • 4377 independent reflections

  • 3820 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.04

  • 4377 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.98 2.7892 (12) 168
O2—H2⋯N2i 0.82 2.05 2.8629 (16) 173
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isoxazole derivatives are important class of heterocyclic compounds and their chemical and biochemical properties have been extensively studied. They have served as a versatile building blocks in organic synthesis and combinatorial chemistry (Tu et al. 2009, Tang et al. 2009). Isoxazole systems have also been targeted in synthetic investigations for their known biological and pharmacological properties such as hypoglycemic, anti-inflammatory and anti-bacterial activities. Recently, the growing interest in such analogues also rises from their high potential value as antiviral (Deng et al. 2009, Lee et al. 2009) and anti-tumor agents (Kozikowski et al. 2008).

We have undertaken the X-ray diffraction study of the title compound, in order to understand the molecular features which stabilize its observed conformation. The asymmetric unit contains two molecules crystallographically independent. Each molecule is formed by three interconnected cycles, two essentially planar rings: isoxazole and methylbenzyl rings while the 3rd ring (cyclohexanol) has a chair conformation (Fig. 1). The difference between the molecules lies in the orientation of the rings in each molecule as shown in the fitting drawing (Fig. 2) obtained with PLATON (Spek, 2003). Thus in the first molecule (C1 to C15) the dihedral angles between the isoxazole ring and methylbenzyl ring planes is 22.03 (8)° and between the isoxazole and cyclohexanol ring planes is 30.15 (8)°. Whereas in the second molecule (C16 to C30), equivalent angles have as values 6.13 (10) and 88.44 (8)°, respectively.

The two molecules within the asymmetric unit are linked through O-H···O hydrogen bond building a pseudo dimer. These pseudo dimers are further linked to each other by O-H···N hydrogen bonds forming a zig-zag like chain parallel to the a axis (Table 1, Fig. 3).

Related literature top

For isoxazole derivatives as building blocks in organic synthesis and combinatorial chemistry, see: Tu et al. (2009); Tang et al. (2009). For their biological activity, see: Deng et al. (2009); Kozikowski et al. (2008); Lee et al. (2009).

Experimental top

A mixture of 1-ethynylcyclohexanol (1 mmol) and p-methylbenzylaldoxime (1.2 mmol) was dissolved in CH2Cl2 (20 ml), the solution was then cooled thoroughly with ice at 0–5°C. 15 ml of sodium hydroxide solution (12 g. of sodium hydroxide per 100 g. of water) were gradually added under vigorously stirring for 5 h. The organic phase was separated and dried over anhydrous sodium sulfate, filtered and the solvent evaporated under reduced pressure. The residue was purified by recrystallization from ethanol. The structure of adduct was confirmed by spectroscopic methods.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(aromatic, methylene) or Uiso(H) = 1.5Ueq(methyl,O).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular view of the asymmetric unit with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. : View showing the fitting of the two molecules building the asymmetric unit.
[Figure 3] Fig. 3. : Partial packing view showing the formation of a chain through O—H···N hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x-1/2, y+1, z+1/2]
1-(3-p-Tolylisoxazol-5-yl)cyclohexanol top
Crystal data top
C16H19NO2F(000) = 1104
Mr = 257.32Dx = 1.195 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4377 reflections
a = 10.9404 (3) Åθ = 2.6–30.3°
b = 9.7136 (3) ŵ = 0.08 mm1
c = 26.9207 (7) ÅT = 298 K
V = 2860.88 (14) Å3Bloc, colourless
Z = 80.18 × 0.17 × 0.10 mm
Data collection top
Bruker X8 APEXII
diffractometer
3820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 30.3°, θmin = 0.8°
ϕ and ω scansh = 1515
87116 measured reflectionsk = 1313
4377 independent reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2498P]
where P = (Fo2 + 2Fc2)/3
8578 reflections(Δ/σ)max = 0.008
347 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C16H19NO2V = 2860.88 (14) Å3
Mr = 257.32Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 10.9404 (3) ŵ = 0.08 mm1
b = 9.7136 (3) ÅT = 298 K
c = 26.9207 (7) Å0.18 × 0.17 × 0.10 mm
Data collection top
Bruker X8 APEXII
diffractometer
3820 reflections with I > 2σ(I)
87116 measured reflectionsRint = 0.032
4377 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
8578 reflectionsΔρmin = 0.15 e Å3
347 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06445 (8)0.00823 (10)0.57893 (4)0.0480 (2)
H10.09300.08320.58670.072*
O30.11978 (9)0.17692 (11)0.65818 (4)0.0483 (2)
N10.17299 (11)0.19192 (14)0.70537 (4)0.0503 (3)
C10.26673 (12)0.03462 (16)0.54425 (5)0.0477 (3)
H1A0.33250.10150.54380.057*
H1B0.29740.04890.55950.057*
C20.22715 (16)0.0037 (2)0.49105 (6)0.0619 (4)
H2A0.16610.06880.49130.074*
H2B0.29700.02870.47220.074*
C30.17463 (17)0.1307 (2)0.46633 (6)0.0656 (4)
H3A0.23770.20040.46340.079*
H3B0.14680.10750.43320.079*
C40.06776 (16)0.18753 (18)0.49661 (6)0.0584 (4)
H4A0.00140.12140.49640.070*
H4B0.03840.27170.48130.070*
C50.10482 (13)0.21730 (13)0.55016 (6)0.0475 (3)
H5A0.16360.29210.55070.057*
H5B0.03350.24630.56880.057*
C60.16095 (10)0.09053 (12)0.57496 (5)0.0365 (2)
C70.20414 (11)0.12361 (12)0.62677 (5)0.0384 (2)
C80.31007 (12)0.10441 (14)0.65116 (5)0.0420 (3)
H80.38300.06990.63850.050*
C90.28579 (12)0.14860 (13)0.70052 (5)0.0406 (3)
C100.36790 (13)0.14279 (14)0.74392 (5)0.0440 (3)
C110.46620 (14)0.05373 (16)0.74405 (5)0.0512 (3)
H110.48170.00030.71620.061*
C120.54184 (16)0.04399 (19)0.78505 (6)0.0587 (4)
H120.60740.01690.78440.070*
C130.52180 (16)0.12314 (19)0.82699 (6)0.0603 (4)
C140.42354 (18)0.2130 (2)0.82669 (6)0.0653 (4)
H140.40870.26770.85440.078*
C150.34695 (16)0.22311 (18)0.78595 (6)0.0577 (4)
H150.28120.28380.78660.069*
C310.6071 (2)0.1127 (3)0.87111 (8)0.0909 (7)
H31A0.69010.12220.86010.136*
H31B0.58850.18450.89440.136*
H31C0.59680.02470.88680.136*
O20.13845 (8)0.27957 (9)0.59456 (4)0.0446 (2)
H20.08330.32170.58060.067*
O40.37614 (10)0.53575 (12)0.59082 (4)0.0551 (3)
N20.43241 (12)0.59158 (15)0.54833 (5)0.0567 (3)
C160.30531 (13)0.29329 (15)0.65160 (6)0.0474 (3)
H16A0.34000.21650.63340.057*
H16B0.37210.35180.66240.057*
C170.23731 (17)0.23905 (17)0.69701 (6)0.0587 (4)
H17A0.17800.17070.68650.070*
H17B0.29490.19440.71920.070*
C180.1719 (2)0.35391 (19)0.72487 (6)0.0650 (4)
H18A0.12690.31530.75260.078*
H18B0.23160.41820.73800.078*
C190.08429 (16)0.42955 (17)0.69051 (6)0.0570 (4)
H19A0.02110.36680.67930.068*
H19B0.04530.50410.70850.068*
C200.15192 (13)0.48696 (13)0.64607 (5)0.0439 (3)
H20A0.20970.55610.65730.053*
H20B0.09390.53160.62410.053*
C210.22078 (11)0.37544 (12)0.61712 (5)0.0383 (2)
C220.29290 (11)0.44198 (13)0.57612 (5)0.0398 (2)
C230.29195 (13)0.43498 (14)0.52616 (5)0.0459 (3)
H230.24310.37920.50630.055*
C240.38164 (12)0.53111 (14)0.51042 (5)0.0437 (3)
C250.41837 (14)0.56858 (16)0.45954 (6)0.0507 (3)
C260.49890 (17)0.6774 (2)0.45147 (7)0.0678 (4)
H260.52830.72840.47810.081*
C270.53507 (19)0.7092 (3)0.40341 (8)0.0829 (6)
H270.58870.78220.39840.099*
C280.4935 (2)0.6354 (2)0.36267 (7)0.0763 (5)
C290.4112 (3)0.5332 (3)0.37146 (8)0.0963 (8)
H290.37920.48470.34460.116*
C300.3732 (3)0.4987 (2)0.41912 (7)0.0801 (6)
H340.31700.42800.42370.096*
C320.5363 (3)0.6679 (4)0.31036 (9)0.1103 (9)
H32A0.58100.75290.31050.165*
H32B0.46680.67610.28880.165*
H32C0.58830.59510.29870.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (4)0.0406 (4)0.0675 (6)0.0067 (3)0.0034 (4)0.0048 (4)
O30.0416 (5)0.0563 (5)0.0471 (5)0.0072 (4)0.0036 (4)0.0019 (4)
N10.0518 (7)0.0578 (7)0.0413 (6)0.0064 (5)0.0042 (5)0.0006 (5)
C10.0346 (6)0.0643 (8)0.0443 (7)0.0050 (5)0.0031 (5)0.0053 (6)
C20.0513 (8)0.0882 (11)0.0463 (7)0.0129 (8)0.0041 (6)0.0164 (8)
C30.0653 (10)0.0874 (12)0.0440 (7)0.0045 (9)0.0063 (7)0.0033 (8)
C40.0627 (9)0.0580 (8)0.0546 (8)0.0075 (7)0.0155 (7)0.0070 (7)
C50.0533 (7)0.0382 (6)0.0510 (7)0.0019 (5)0.0065 (6)0.0037 (6)
C60.0306 (5)0.0353 (5)0.0436 (6)0.0027 (4)0.0025 (4)0.0008 (4)
C70.0355 (6)0.0366 (5)0.0432 (6)0.0025 (4)0.0045 (4)0.0038 (5)
C80.0369 (6)0.0478 (6)0.0413 (6)0.0019 (5)0.0017 (5)0.0031 (5)
C90.0441 (6)0.0372 (6)0.0404 (6)0.0040 (5)0.0039 (5)0.0018 (5)
C100.0487 (7)0.0457 (6)0.0376 (6)0.0065 (5)0.0020 (5)0.0009 (5)
C110.0560 (8)0.0534 (7)0.0442 (7)0.0014 (6)0.0032 (6)0.0061 (6)
C120.0553 (9)0.0671 (9)0.0538 (8)0.0039 (7)0.0081 (6)0.0015 (7)
C130.0632 (9)0.0777 (11)0.0400 (7)0.0091 (8)0.0050 (6)0.0035 (7)
C140.0756 (11)0.0816 (12)0.0387 (7)0.0003 (9)0.0005 (7)0.0116 (7)
C150.0626 (9)0.0641 (9)0.0465 (7)0.0053 (7)0.0029 (6)0.0076 (7)
C310.0888 (15)0.132 (2)0.0516 (10)0.0045 (14)0.0215 (10)0.0034 (12)
O20.0412 (5)0.0333 (4)0.0595 (6)0.0003 (3)0.0095 (4)0.0018 (4)
O40.0527 (6)0.0675 (7)0.0449 (5)0.0229 (5)0.0046 (4)0.0012 (5)
N20.0524 (7)0.0693 (8)0.0483 (6)0.0200 (6)0.0015 (5)0.0057 (6)
C160.0452 (7)0.0445 (6)0.0523 (7)0.0060 (5)0.0096 (5)0.0034 (6)
C170.0703 (10)0.0523 (8)0.0535 (8)0.0080 (7)0.0056 (7)0.0127 (6)
C180.0870 (12)0.0643 (10)0.0439 (7)0.0032 (9)0.0041 (7)0.0064 (7)
C190.0615 (9)0.0545 (8)0.0550 (8)0.0079 (7)0.0128 (7)0.0000 (6)
C200.0471 (7)0.0360 (6)0.0486 (7)0.0035 (5)0.0000 (5)0.0009 (5)
C210.0363 (6)0.0338 (5)0.0446 (6)0.0007 (4)0.0034 (5)0.0002 (5)
C220.0361 (6)0.0371 (5)0.0461 (6)0.0018 (4)0.0040 (5)0.0010 (5)
C230.0481 (7)0.0426 (6)0.0470 (7)0.0042 (5)0.0044 (5)0.0050 (5)
C240.0403 (6)0.0431 (6)0.0476 (7)0.0030 (5)0.0005 (5)0.0008 (5)
C250.0502 (7)0.0519 (7)0.0501 (7)0.0068 (6)0.0036 (6)0.0036 (6)
C260.0579 (9)0.0868 (12)0.0586 (9)0.0137 (8)0.0026 (7)0.0075 (8)
C270.0667 (11)0.1048 (16)0.0772 (14)0.0099 (10)0.0099 (10)0.0285 (12)
C280.0845 (13)0.0901 (14)0.0544 (9)0.0206 (11)0.0148 (9)0.0135 (10)
C290.149 (2)0.0882 (16)0.0514 (10)0.0098 (16)0.0070 (13)0.0056 (10)
C300.1169 (17)0.0688 (11)0.0545 (9)0.0194 (11)0.0065 (10)0.0061 (9)
C320.126 (2)0.141 (2)0.0640 (13)0.0189 (19)0.0251 (13)0.0296 (14)
Geometric parameters (Å, º) top
O1—C61.4305 (14)O2—C211.4308 (15)
O1—H10.8200O2—H20.8200
O3—C71.3546 (15)O4—C221.3473 (16)
O3—N11.4051 (16)O4—N21.4076 (17)
N1—C91.3103 (18)N2—C241.3021 (19)
C1—C61.5223 (18)C16—C171.525 (2)
C1—C21.526 (2)C16—C211.5342 (17)
C1—H1A0.9700C16—H16A0.9700
C1—H1B0.9700C16—H16B0.9700
C2—C31.515 (3)C17—C181.523 (2)
C2—H2A0.9700C17—H17A0.9700
C2—H2B0.9700C17—H17B0.9700
C3—C41.528 (3)C18—C191.521 (3)
C3—H3A0.9700C18—H18A0.9700
C3—H3B0.9700C18—H18B0.9700
C4—C51.525 (2)C19—C201.513 (2)
C4—H4A0.9700C19—H19A0.9700
C4—H4B0.9700C19—H19B0.9700
C5—C61.5294 (17)C20—C211.5325 (18)
C5—H5A0.9700C20—H20A0.9700
C5—H5B0.9700C20—H20B0.9700
C6—C71.5072 (17)C21—C221.5027 (18)
C7—C81.3450 (18)C22—C231.3469 (19)
C8—C91.4215 (17)C23—C241.419 (2)
C8—H80.9300C23—H230.9300
C9—C101.4747 (19)C24—C251.473 (2)
C10—C111.380 (2)C25—C301.375 (3)
C10—C151.393 (2)C25—C261.393 (2)
C11—C121.383 (2)C26—C271.388 (3)
C11—H110.9300C26—H260.9300
C12—C131.384 (2)C27—C281.387 (3)
C12—H120.9300C27—H270.9300
C13—C141.385 (3)C28—C291.362 (4)
C13—C311.514 (2)C28—C321.517 (3)
C14—C151.384 (2)C29—C301.390 (3)
C14—H140.9300C29—H290.9300
C15—H150.9300C30—H340.9300
C31—H31A0.9600C32—H32A0.9600
C31—H31B0.9600C32—H32B0.9600
C31—H31C0.9600C32—H32C0.9600
C6—O1—H1109.5C21—O2—H2109.5
C7—O3—N1108.77 (10)C22—O4—N2108.51 (11)
C9—N1—O3105.48 (10)C24—N2—O4106.05 (11)
C6—C1—C2111.35 (11)C17—C16—C21111.76 (12)
C6—C1—H1A109.4C17—C16—H16A109.3
C2—C1—H1A109.4C21—C16—H16A109.3
C6—C1—H1B109.4C17—C16—H16B109.3
C2—C1—H1B109.4C21—C16—H16B109.3
H1A—C1—H1B108.0H16A—C16—H16B107.9
C3—C2—C1111.08 (14)C18—C17—C16111.78 (13)
C3—C2—H2A109.4C18—C17—H17A109.3
C1—C2—H2A109.4C16—C17—H17A109.3
C3—C2—H2B109.4C18—C17—H17B109.3
C1—C2—H2B109.4C16—C17—H17B109.3
H2A—C2—H2B108.0H17A—C17—H17B107.9
C2—C3—C4110.49 (14)C19—C18—C17110.50 (14)
C2—C3—H3A109.6C19—C18—H18A109.5
C4—C3—H3A109.6C17—C18—H18A109.5
C2—C3—H3B109.6C19—C18—H18B109.5
C4—C3—H3B109.6C17—C18—H18B109.5
H3A—C3—H3B108.1H18A—C18—H18B108.1
C5—C4—C3111.66 (13)C20—C19—C18110.53 (14)
C5—C4—H4A109.3C20—C19—H19A109.5
C3—C4—H4A109.3C18—C19—H19A109.5
C5—C4—H4B109.3C20—C19—H19B109.5
C3—C4—H4B109.3C18—C19—H19B109.5
H4A—C4—H4B107.9H19A—C19—H19B108.1
C4—C5—C6111.51 (12)C19—C20—C21112.46 (11)
C4—C5—H5A109.3C19—C20—H20A109.1
C6—C5—H5A109.3C21—C20—H20A109.1
C4—C5—H5B109.3C19—C20—H20B109.1
C6—C5—H5B109.3C21—C20—H20B109.1
H5A—C5—H5B108.0H20A—C20—H20B107.8
O1—C6—C7107.77 (10)O2—C21—C22107.39 (10)
O1—C6—C1111.25 (10)O2—C21—C20111.49 (10)
C7—C6—C1109.89 (10)C22—C21—C20109.12 (10)
O1—C6—C5106.03 (10)O2—C21—C16107.32 (10)
C7—C6—C5110.98 (10)C22—C21—C16110.59 (10)
C1—C6—C5110.82 (11)C20—C21—C16110.87 (11)
C8—C7—O3109.59 (11)C23—C22—O4109.43 (12)
C8—C7—C6133.82 (11)C23—C22—C21135.04 (12)
O3—C7—C6116.46 (10)O4—C22—C21115.47 (11)
C7—C8—C9104.69 (11)C22—C23—C24105.05 (12)
C7—C8—H8127.7C22—C23—H23127.5
C9—C8—H8127.7C24—C23—H23127.5
N1—C9—C8111.47 (12)N2—C24—C23110.96 (13)
N1—C9—C10120.48 (12)N2—C24—C25120.07 (13)
C8—C9—C10127.96 (12)C23—C24—C25128.96 (13)
C11—C10—C15118.49 (13)C30—C25—C26118.61 (16)
C11—C10—C9120.05 (12)C30—C25—C24121.05 (15)
C15—C10—C9121.44 (13)C26—C25—C24120.34 (15)
C10—C11—C12120.75 (14)C27—C26—C25119.66 (19)
C10—C11—H11119.6C27—C26—H26120.2
C12—C11—H11119.6C25—C26—H26120.2
C11—C12—C13121.24 (16)C28—C27—C26121.9 (2)
C11—C12—H12119.4C28—C27—H27119.0
C13—C12—H12119.4C26—C27—H27119.0
C12—C13—C14117.94 (14)C29—C28—C27117.17 (18)
C12—C13—C31120.35 (18)C29—C28—C32121.1 (2)
C14—C13—C31121.69 (17)C27—C28—C32121.7 (2)
C15—C14—C13121.28 (15)C28—C29—C30122.3 (2)
C15—C14—H14119.4C28—C29—H29118.9
C13—C14—H14119.4C30—C29—H29118.9
C14—C15—C10120.30 (16)C25—C30—C29120.3 (2)
C14—C15—H15119.9C25—C30—H34119.9
C10—C15—H15119.9C29—C30—H34119.9
C13—C31—H31A109.5C28—C32—H32A109.5
C13—C31—H31B109.5C28—C32—H32B109.5
H31A—C31—H31B109.5H32A—C32—H32B109.5
C13—C31—H31C109.5C28—C32—H32C109.5
H31A—C31—H31C109.5H32A—C32—H32C109.5
H31B—C31—H31C109.5H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.982.7892 (12)168
O2—H2···N2i0.822.052.8629 (16)173
Symmetry code: (i) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H19NO2
Mr257.32
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)10.9404 (3), 9.7136 (3), 26.9207 (7)
V3)2860.88 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.17 × 0.10
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
87116, 4377, 3820
Rint0.032
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.04
No. of reflections8578
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.982.7892 (12)167.8
O2—H2···N2i0.822.052.8629 (16)173.3
Symmetry code: (i) x1/2, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making this work possible. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, B. L., Zhao, Y., Hartman, T. L., Watson, K., Buckheit, R. W. Jr, Pannecouque, C., De Clercq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKozikowski, A. P., Tapadar, S., Luchini, D. N., Kim, K. H. & Billadeau, D. D. (2008). J. Med. Chem. 51, 4370–4373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. S., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, S., He, J., Sun, Y., Liuer He, L. & She, X. (2009). Org. Lett. 11, 3982–3983.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTu, S. J., Zhang, X. H., Han, Z. G., Cao, X. D., Wu, S. S., Yan, S., Hao, W. J., Zhang, G. & Ma, N. (2009). J. Comb. Chem. 11, 428–32.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds