organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Cyclo­heptane-1,2-diol

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 29 October 2009; accepted 24 November 2009; online 28 November 2009)

The title compound, C7H14O2, is a vicinal diol derived from cyclo­heptane with cis-orientated hydr­oxy groups. The mol­ecules shows no non-crystallographic symmetry. The O—C—C—O torsion angles of both mol­ecules present in the asymmetric unit [−66.4 (2) and −66.9 (2)°] are similar to those in trans-configured cyclo­hexane derivatives (including pyran­oses) as well as rac-trans-cyclo­heptane-1,2-diol, but smaller than those in trans-configured cyclo­pentane derivatives (including furan­oses). In the crystal structure, O—H⋯O hydrogen bonds furnish the formation of sheets parallel to [110].

Related literature

For the synthesis, see: Becker et al. (2001[Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum - Organisch-chemisches Grundpraktikum. Weinheim, Germany: Wiley-VCH.]). For torsion angles of cis- and trans-configured cyclo­hexane-1,2-diols, see: Sillanpää et al. (1984[Sillanpää, R., Leskelä, M. & Hiltunen, L. (1984). Acta Chem. Scand. Ser. B, 38, 249-254.]). For the structure of the corresponding rac-trans-cyclo­heptane-1,2-diol, see: Betz & Klüfers (2007[Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4129.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14O2

  • Mr = 130.18

  • Triclinic, [P \overline 1]

  • a = 7.4148 (5) Å

  • b = 8.7629 (5) Å

  • c = 12.4531 (6) Å

  • α = 103.861 (4)°

  • β = 105.685 (4)°

  • γ = 90.189 (4)°

  • V = 754.32 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.25 × 0.22 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4882 measured reflections

  • 2658 independent reflections

  • 1965 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.207

  • S = 1.04

  • 2658 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12i 0.84 1.92 2.697 (2) 154
O12—H12⋯O22 0.84 1.90 2.733 (2) 173
O21—H21⋯O11ii 0.84 1.88 2.720 (2) 178
O22—H22⋯O21iii 0.84 1.91 2.699 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) -x, -y, -z.

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During our investigation of the chelation abilities of selected cis- and trans-configured cyclic vicinal diols and the influence of bonding to various metals, semi-metals and non-metals on the geometry of the chelating molecule, the structure of cis-cycloheptane-1,2-diol was determined.

Both molecules present in the asymmetric unit adopt chair-like conformations (Fig. 1). The O–C–C–O torsion angle is found at 60° and 66°, respectively. Both molecules possess (RS/SR)-configuration.

A disorder of a methylene group in one of the molecules was accounted for by a split model. The major position dominates by a 4:1 ratio.

In the crystal structure, hydrogen bonds furnish the formation of sheets parallel to [1 1 0]. The hydrophobic cycloheptane moieties form the surfaces of these sheets. The description of the hydrogen bonding pattern can be done in two ways: first, it can be seen as a combination of annealated ten- and eighteen-membered rings with diverging directions of rotation. As an alternative, the pattern may be seen as a set of two cooperative, antidromic chains (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor on the unitary level is DDR22(10)R22(10). While the eighteen-membered rings appear on the ternary level of graph-set analysis with a R66(18) descriptor, the cooperative chains appear on the quarternary level with a C44(8) descriptor.

Related literature top

For the synthesis, see: Becker et al. (2001). For torsion angles of cis- and trans-configured cyclohexane-1,2-diols, see: Sillanpää et al. (1984). For the structure of the corresponding rac-trans-cycloheptane-1,2-diol, see: Betz & Klüfers (2007). For graph-set analysis, see Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was prepared by standard procedures upon neutral aqueous dihydroxylation of cycloheptene with potassium permanganate (Becker et al., 2001). Crystals suitable for X-ray diffraction were directly obtained from the solidified reaction product.

Refinement top

All carbon bonded H-atoms were placed in calculated positions (C—H 1.00 Å for methine groups, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for both groups. Hydroxyl H atoms were allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)). For the refinement their U(H) was set to 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two molecules comprising the asymmetric unit of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. Only the major component of the split C atom (C 16) is shown for clarity.
[Figure 2] Fig. 2. Intermolecular interactions in the crystal structure of the title compound, viewed along [0 0 -1]. For clarity, the carbocyclic moieties were not depicted and the labelling of atoms was replaced by the following colour code: blue arrows indicate hydrogen bonds between the first molecule of the asymmetric unit and its symmetry-generated equivalents, green arrows between the second molecule and its equivalents. Yellow arrows denote hydrogen bonds between the two molecules.
cis-Cycloheptane-1,2-diol top
Crystal data top
C7H14O2Z = 4
Mr = 130.18F(000) = 288
Triclinic, P1Dx = 1.146 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4148 (5) ÅCell parameters from 8679 reflections
b = 8.7629 (5) Åθ = 3.1–25.0°
c = 12.4531 (6) ŵ = 0.08 mm1
α = 103.861 (4)°T = 200 K
β = 105.685 (4)°Platelet, colourless
γ = 90.189 (4)°0.25 × 0.22 × 0.05 mm
V = 754.32 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
1965 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.057
MONTEL, graded multilayered X-ray optics monochromatorθmax = 25.1°, θmin = 3.3°
ω scansh = 88
4882 measured reflectionsk = 1010
2658 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: difference Fourier map
wR(F2) = 0.207H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1106P)2 + 0.3333P]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H14O2γ = 90.189 (4)°
Mr = 130.18V = 754.32 (8) Å3
Triclinic, P1Z = 4
a = 7.4148 (5) ÅMo Kα radiation
b = 8.7629 (5) ŵ = 0.08 mm1
c = 12.4531 (6) ÅT = 200 K
α = 103.861 (4)°0.25 × 0.22 × 0.05 mm
β = 105.685 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1965 reflections with I > 2σ(I)
4882 measured reflectionsRint = 0.057
2658 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.04Δρmax = 0.65 e Å3
2658 reflectionsΔρmin = 0.32 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.2847 (2)0.6535 (2)0.06402 (15)0.0429 (5)
H110.35780.61900.02410.064*
O120.4661 (2)0.36087 (19)0.06017 (15)0.0413 (5)
H120.38300.28950.01910.062*
O210.0359 (2)0.1787 (2)0.05660 (15)0.0419 (5)
H210.11490.22800.01840.063*
O220.2163 (2)0.11011 (19)0.06570 (15)0.0425 (5)
H220.14340.10440.02530.064*
C110.2358 (3)0.5332 (3)0.1133 (2)0.0367 (6)
H1110.14200.45530.05120.044*
C120.4071 (3)0.4461 (3)0.1566 (2)0.0361 (6)
H1210.37130.36950.19660.043*
C130.5755 (4)0.5519 (3)0.2380 (2)0.0507 (7)
H1310.69060.49710.23280.061*
H1320.58220.64880.21110.061*
C140.5765 (6)0.5994 (5)0.3625 (3)0.0884 (13)
H1410.61320.50800.39530.106*
H1420.67760.68430.40240.106*
C150.4085 (7)0.6530 (7)0.3932 (3)0.1032 (15)
H1510.44740.72810.47010.124*
H1520.33920.56110.40070.124*
C1610.2784 (8)0.7289 (5)0.3149 (3)0.0689 (17)0.817 (10)
H1610.35230.79920.28850.083*0.817 (10)
H1620.20130.79570.35830.083*0.817 (10)
C1620.192 (2)0.626 (2)0.3178 (12)0.053 (6)0.183 (10)
H1630.13970.53040.33100.064*0.183 (10)
H1640.12710.71550.35170.064*0.183 (10)
C170.1397 (4)0.6103 (4)0.2034 (3)0.0571 (8)
H1710.08350.52700.22840.069*
H1720.03620.66930.16800.069*
C210.0931 (3)0.1616 (3)0.1545 (2)0.0347 (6)
H2110.12800.26590.19400.042*
C220.2640 (3)0.0448 (3)0.1131 (2)0.0355 (6)
H2210.35730.07830.05000.043*
C230.3614 (4)0.0332 (3)0.2039 (3)0.0536 (8)
H2310.42450.13140.22260.064*
H2320.46000.05480.17060.064*
C240.2292 (6)0.0064 (4)0.3191 (3)0.0742 (10)
H2410.15640.08560.29970.089*
H2420.30840.02010.36550.089*
C250.0944 (6)0.1437 (5)0.3915 (3)0.0847 (12)
H2510.06330.13680.47260.102*
H2520.15940.24150.38710.102*
C260.0835 (6)0.1586 (5)0.3613 (3)0.0785 (11)
H2610.13450.26980.39250.094*
H2620.17430.09400.40150.094*
C270.0755 (4)0.1119 (3)0.2359 (2)0.0484 (7)
H2710.19090.15740.22660.058*
H2720.07660.00430.21220.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0463 (11)0.0451 (10)0.0495 (11)0.0157 (8)0.0234 (8)0.0231 (8)
O120.0415 (10)0.0325 (9)0.0512 (11)0.0000 (7)0.0211 (8)0.0037 (7)
O210.0418 (10)0.0427 (10)0.0526 (11)0.0119 (7)0.0224 (8)0.0228 (8)
O220.0459 (10)0.0340 (9)0.0489 (11)0.0024 (7)0.0224 (8)0.0028 (7)
C110.0374 (13)0.0354 (12)0.0390 (13)0.0030 (10)0.0118 (10)0.0110 (10)
C120.0395 (13)0.0320 (12)0.0403 (13)0.0060 (9)0.0135 (10)0.0129 (10)
C130.0404 (15)0.0483 (16)0.0512 (16)0.0065 (11)0.0014 (12)0.0054 (12)
C140.103 (3)0.094 (3)0.0451 (19)0.008 (2)0.0056 (19)0.0039 (18)
C150.117 (4)0.135 (4)0.051 (2)0.013 (3)0.024 (2)0.009 (2)
C1610.109 (4)0.058 (3)0.055 (2)0.030 (3)0.050 (2)0.0120 (19)
C1620.052 (10)0.074 (13)0.034 (8)0.005 (8)0.026 (7)0.000 (7)
C170.0635 (19)0.0571 (17)0.074 (2)0.0252 (14)0.0443 (16)0.0309 (15)
C210.0397 (13)0.0279 (11)0.0386 (13)0.0029 (9)0.0140 (10)0.0088 (9)
C220.0343 (12)0.0358 (13)0.0370 (13)0.0042 (9)0.0119 (10)0.0081 (10)
C230.0609 (18)0.0463 (15)0.0661 (18)0.0053 (13)0.0406 (15)0.0120 (13)
C240.105 (3)0.069 (2)0.067 (2)0.002 (2)0.049 (2)0.0249 (17)
C250.115 (3)0.092 (3)0.0427 (18)0.014 (2)0.019 (2)0.0130 (18)
C260.096 (3)0.079 (2)0.0438 (18)0.004 (2)0.0042 (18)0.0103 (16)
C270.0437 (15)0.0467 (15)0.0489 (16)0.0047 (11)0.0006 (12)0.0152 (12)
Geometric parameters (Å, º) top
O11—C111.431 (3)C161—H1620.9900
O11—H110.8400C162—C171.343 (15)
O12—C121.431 (3)C162—H1630.9900
O12—H120.8400C162—H1640.9900
O21—C211.434 (3)C17—H1710.9900
O21—H210.8400C17—H1720.9900
O22—C221.431 (3)C21—C221.518 (3)
O22—H220.8400C21—C271.520 (3)
C11—C171.515 (3)C21—H2111.0000
C11—C121.523 (3)C22—C231.519 (3)
C11—H1111.0000C22—H2211.0000
C12—C131.518 (3)C23—C241.573 (5)
C12—H1211.0000C23—H2310.9900
C13—C141.503 (5)C23—H2320.9900
C13—H1310.9900C24—C251.498 (5)
C13—H1320.9900C24—H2410.9900
C14—C151.447 (6)C24—H2420.9900
C14—H1410.9900C25—C261.480 (6)
C14—H1420.9900C25—H2510.9900
C15—C1611.459 (6)C25—H2520.9900
C15—C1621.609 (17)C26—C271.501 (4)
C15—H1510.9900C26—H2610.9900
C15—H1520.9900C26—H2620.9900
C161—C171.611 (6)C27—H2710.9900
C161—H1610.9900C27—H2720.9900
C11—O11—H11109.5C162—C17—C16143.2 (8)
C12—O12—H12109.5C11—C17—C161113.6 (3)
C21—O21—H21109.5C162—C17—H17165.7
C22—O22—H22109.5C11—C17—H171108.8
O11—C11—C17107.3 (2)C161—C17—H171108.8
O11—C11—C12110.63 (19)C162—C17—H172120.6
C17—C11—C12115.3 (2)C11—C17—H172108.8
O11—C11—H111107.8C161—C17—H172108.8
C17—C11—H111107.8H171—C17—H172107.7
C12—C11—H111107.8O21—C21—C22108.75 (19)
O12—C12—C13106.8 (2)O21—C21—C27107.1 (2)
O12—C12—C11108.94 (19)C22—C21—C27114.1 (2)
C13—C12—C11114.6 (2)O21—C21—H211108.9
O12—C12—H121108.8C22—C21—H211108.9
C13—C12—H121108.8C27—C21—H211108.9
C11—C12—H121108.8O22—C22—C21110.90 (18)
C14—C13—C12115.8 (3)O22—C22—C23107.6 (2)
C14—C13—H131108.3C21—C22—C23115.3 (2)
C12—C13—H131108.3O22—C22—H221107.6
C14—C13—H132108.3C21—C22—H221107.6
C12—C13—H132108.3C23—C22—H221107.6
H131—C13—H132107.4C22—C23—C24115.2 (2)
C15—C14—C13120.0 (3)C22—C23—H231108.5
C15—C14—H141107.3C24—C23—H231108.5
C13—C14—H141107.3C22—C23—H232108.5
C15—C14—H142107.3C24—C23—H232108.5
C13—C14—H142107.3H231—C23—H232107.5
H141—C14—H142106.9C25—C24—C23115.1 (3)
C14—C15—C161117.2 (4)C25—C24—H241108.5
C14—C15—C162130.3 (6)C23—C24—H241108.5
C161—C15—C16242.3 (7)C25—C24—H242108.5
C14—C15—H151108.0C23—C24—H242108.5
C161—C15—H151108.0H241—C24—H242107.5
C162—C15—H151121.1C26—C25—C24116.5 (3)
C14—C15—H152108.0C26—C25—H251108.2
C161—C15—H152108.0C24—C25—H251108.2
C162—C15—H15265.7C26—C25—H252108.2
H151—C15—H152107.2C24—C25—H252108.2
C15—C161—C17115.2 (4)H251—C25—H252107.3
C15—C161—H161108.5C25—C26—C27117.4 (3)
C17—C161—H161108.5C25—C26—H261108.0
C15—C161—H162108.5C27—C26—H261108.0
C17—C161—H162108.5C25—C26—H262108.0
H161—C161—H162107.5C27—C26—H262108.0
C17—C162—C15122.7 (11)H261—C26—H262107.2
C17—C162—H163106.7C26—C27—C21115.9 (3)
C15—C162—H163106.7C26—C27—H271108.3
C17—C162—H164106.7C21—C27—H271108.3
C15—C162—H164106.7C26—C27—H272108.3
H163—C162—H164106.6C21—C27—H272108.3
C162—C17—C11129.7 (8)H271—C27—H272107.4
O11—C11—C12—O1266.4 (2)O11—C11—C17—C16169.0 (3)
C17—C11—C12—O12171.6 (2)C12—C11—C17—C16154.7 (3)
O11—C11—C12—C1353.2 (3)C15—C161—C17—C16249.7 (11)
C17—C11—C12—C1368.8 (3)C15—C161—C17—C1173.9 (4)
O12—C12—C13—C14155.2 (3)O21—C21—C22—O2266.9 (2)
C11—C12—C13—C1484.1 (3)C27—C21—C22—O2252.5 (3)
C12—C13—C14—C1545.7 (5)O21—C21—C22—C23170.5 (2)
C13—C14—C15—C16128.3 (7)C27—C21—C22—C2370.1 (3)
C13—C14—C15—C16220.8 (13)O22—C22—C23—C2473.0 (3)
C14—C15—C161—C1780.7 (6)C21—C22—C23—C2451.3 (3)
C162—C15—C161—C1740.4 (8)C22—C23—C24—C2569.2 (4)
C14—C15—C162—C1731 (2)C23—C24—C25—C2684.1 (4)
C161—C15—C162—C1756.6 (14)C24—C25—C26—C2736.0 (5)
C15—C162—C17—C1135 (2)C25—C26—C27—C2140.9 (4)
C15—C162—C17—C16148.0 (11)O21—C21—C27—C26152.3 (2)
O11—C11—C17—C162116.9 (12)C22—C21—C27—C2687.4 (3)
C12—C11—C17—C1626.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.841.922.697 (2)154
O12—H12···O220.841.902.733 (2)173
O21—H21···O11ii0.841.882.720 (2)178
O22—H22···O21iii0.841.912.699 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC7H14O2
Mr130.18
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.4148 (5), 8.7629 (5), 12.4531 (6)
α, β, γ (°)103.861 (4), 105.685 (4), 90.189 (4)
V3)754.32 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4882, 2658, 1965
Rint0.057
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.207, 1.04
No. of reflections2658
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.32

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.841.922.697 (2)154.3
O12—H12···O220.841.902.733 (2)172.7
O21—H21···O11ii0.841.882.720 (2)177.5
O22—H22···O21iii0.841.912.699 (2)155.7
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y, z.
 

Acknowledgements

The authors thank Sandra Albrecht for professional support.

References

First citationBecker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum – Organisch-chemisches Grundpraktikum. Weinheim, Germany: Wiley–VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSillanpää, R., Leskelä, M. & Hiltunen, L. (1984). Acta Chem. Scand. Ser. B, 38, 249–254.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds