metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(quinolin-8-ol)silver(I) 2-hydr­­oxy-3,5-di­nitro­benzoate

aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 29 October 2009; accepted 2 November 2009; online 7 November 2009)

The title compound, [Ag(C9H7NO)2](C7H3N2O7), was prepared from 3,5-dinitro­salicylic acid (DNS), quinolin-8-ol and AgNO3. The AgI atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar [maximum deviation = 0.223 (2) Å] environment. The two quinolin-8-ol ligands are bent slightly with respect to each other, making a dihedral angle of 9.55 (9)°. The DNS anion inter­acts with the silver complex through O—H⋯O hydrogen bonds

Related literature

For related structures, see: Smith & Thomasson (1999[Smith, G. & Thomasson, J. H. (1999). Aust. J. Chem. 52, 317-324.]); Smith et al. (2001[Smith, G., Wermuth, U. D. & White, J. M. (2001). Aust. J. Chem. 54, 171-175.]); Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C9H7NO)2](C7H3N2O7)

  • Mr = 625.30

  • Monoclinic, P 21

  • a = 9.0154 (18) Å

  • b = 7.6122 (15) Å

  • c = 17.138 (3) Å

  • β = 104.38 (3)°

  • V = 1139.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10841 measured reflections

  • 4602 independent reflections

  • 4356 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.09

  • 4602 reflections

  • 353 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1770 Friedel pairs

  • Flack parameter: 0.006 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1AA⋯O8 1.00 1.60 2.602 (3) 175
O2—H2AA⋯O9 0.77 1.88 2.636 (3) 168
O3—H3B⋯O9 0.82 1.74 2.483 (3) 150

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolin-8-ol [quinolin-8-ol (oxine)] is well known as a particularly versatile ligand for use in metal complex chemistry (G. Smith, et al.,2001). It is also known that most of AgI in biological systems is not in the form of free AgI ions, but is coordinated by the abundance of biological ligands (Wu, et al.,2006). As part of our search for new biologically active compounds the title compound has been synthesized and we report its crystal structure here.

Scheme I

The AgI atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar environment with the largest deviation from the mean plane of the non H atoms being 0.223 (2)Å at C14 (Fig. 1). However, the two quinolin-8-ols are slightly bent with respect to each other making a dihedral angle of 9.55 (9)°. In the DNS anion, the NO2 and CO2 groups are twisted with respect to the phenyl ring making dihedral angles of of 29.5 (1)° for C21, N4, O6, O7, 10.7 (2)° for C19, N3, O4, 05 and 10.0 (2)° for C23, C25, O8, O9. All of the bond lengths and bond angles are in normal ranges (Smith, et al.,1999; Smith, et al.,2001; Wu, et al., 2006).

There are O—H···O hydrogen-bond interactions between two quinolin-8-ol and DNS which stabilize the crystal structure (Table 1, Fig. 1).

Related literature top

For related structures, see: Smith & Thomasson (1999); Smith et al. (2001); Wu et al. (2006).

Experimental top

The title compound(I) was prepared by the process as following: A mixture of 3,5-Dinitrosalicylic acid (0.01 mol), salt of quinolin-8-ol and sulfuric acid (0.02 mol) was stirred in distilled water (30 ml) for 3 h to obtain yellow deposit. A mixture of the deposit and AgNO3(0.01 mol) was stirred in ethanol (20 ml) at 353 K for 5 h, then afford the title compound (yield 83%). Single crystals suitable for X-ray measurements were obtailed by recrystallization from ethanol at room temperature.

Refinement top

H atoms were included in calculated positions, with C—H distances constrained to 0.93Å (aromatic CH) and O—H distances constrained to 0.86Å and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate top
Crystal data top
[Ag(C9H7NO)2](C7H3N2O7)F(000) = 628
Mr = 625.30Dx = 1.823 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4356 reflections
a = 9.0154 (18) Åθ = 3.6–27.6°
b = 7.6122 (15) ŵ = 0.95 mm1
c = 17.138 (3) ÅT = 293 K
β = 104.38 (3)°Block, yellow
V = 1139.3 (4) Å30.20 × 0.15 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.6°, θmin = 3.6°
ϕ and ω scansh = 1111
10841 measured reflectionsk = 98
4602 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.028P)2 + 0.3633P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4602 reflectionsΔρmax = 0.70 e Å3
353 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1770 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (18)
Crystal data top
[Ag(C9H7NO)2](C7H3N2O7)V = 1139.3 (4) Å3
Mr = 625.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.0154 (18) ŵ = 0.95 mm1
b = 7.6122 (15) ÅT = 293 K
c = 17.138 (3) Å0.20 × 0.15 × 0.11 mm
β = 104.38 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4356 reflections with I > 2σ(I)
10841 measured reflectionsRint = 0.022
4602 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.70 e Å3
S = 1.09Δρmin = 0.30 e Å3
4602 reflectionsAbsolute structure: Flack (1983), 1770 Friedel pairs
353 parametersAbsolute structure parameter: 0.006 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.062198 (19)0.74284 (3)0.668865 (11)0.01870 (6)
O10.0991 (2)0.4624 (3)0.64039 (12)0.0199 (4)
H1AA0.09500.34500.66700.030*
O20.1744 (2)0.5065 (3)0.77201 (12)0.0217 (4)
H2AA0.14090.41700.77900.033*
N10.1155 (2)0.7669 (4)0.55612 (13)0.0174 (5)
N20.2684 (3)0.8371 (3)0.75436 (14)0.0163 (5)
C10.1281 (3)0.9178 (4)0.51463 (19)0.0223 (6)
H1A0.06131.00900.53540.027*
C20.2364 (4)0.9449 (4)0.44186 (18)0.0246 (6)
H2A0.24101.05190.41520.030*
C30.3353 (3)0.8132 (4)0.41024 (19)0.0211 (6)
H3A0.40800.82970.36180.025*
C40.3269 (3)0.6506 (4)0.45167 (18)0.0170 (6)
C50.4267 (3)0.5080 (4)0.42261 (17)0.0209 (6)
H5A0.50130.51860.37440.025*
C60.4132 (3)0.3552 (4)0.46543 (18)0.0214 (6)
H6A0.47740.26140.44540.026*
C70.3036 (3)0.3371 (4)0.53957 (17)0.0187 (6)
H7A0.29770.23270.56830.022*
C80.2059 (3)0.4719 (4)0.56950 (16)0.0149 (5)
C90.2140 (3)0.6332 (4)0.52566 (16)0.0141 (5)
C100.3161 (3)0.9992 (4)0.74638 (17)0.0187 (6)
H10A0.25721.06970.70610.022*
C110.4512 (3)1.0703 (4)0.79573 (19)0.0222 (6)
H11A0.48071.18470.78780.027*
C120.5375 (3)0.9694 (4)0.85498 (18)0.0210 (6)
H12A0.62771.01400.88780.025*
C130.4907 (3)0.7962 (4)0.86706 (17)0.0172 (6)
C140.5745 (3)0.6843 (4)0.92847 (17)0.0199 (6)
H14A0.66550.72350.96260.024*
C150.5225 (3)0.5197 (4)0.93780 (17)0.0206 (6)
H15A0.57760.44790.97880.025*
C160.3864 (3)0.4567 (4)0.88625 (17)0.0177 (6)
H16A0.35200.34430.89370.021*
C170.3044 (3)0.5596 (4)0.82523 (16)0.0144 (5)
C180.3541 (2)0.7342 (6)0.81437 (14)0.0140 (4)
O30.1402 (2)0.0140 (3)0.92529 (13)0.0260 (5)
H3B0.14050.07930.90150.039*
O40.4152 (2)0.3754 (3)0.69128 (14)0.0284 (5)
O50.3271 (2)0.5962 (3)0.76855 (13)0.0273 (5)
O60.1239 (2)0.5246 (3)0.98348 (12)0.0211 (4)
O70.1678 (2)0.2656 (4)1.03550 (11)0.0289 (4)
O80.0981 (2)0.1498 (3)0.70194 (12)0.0242 (5)
O90.0667 (2)0.2136 (3)0.81890 (12)0.0198 (5)
N30.3217 (2)0.4436 (3)0.74770 (14)0.0173 (5)
N40.1088 (2)0.3646 (3)0.98082 (14)0.0151 (5)
C190.1971 (3)0.3338 (4)0.79249 (18)0.0131 (6)
C200.1028 (3)0.3990 (3)0.86303 (16)0.0128 (5)
H20A0.11520.51270.88030.015*
C210.0095 (3)0.2909 (3)0.90660 (15)0.0118 (6)
C220.0328 (3)0.1188 (4)0.88193 (16)0.0131 (5)
C230.0605 (3)0.0602 (3)0.80700 (16)0.0130 (5)
C240.1769 (3)0.1677 (4)0.76339 (18)0.0137 (6)
H24A0.24050.12860.71520.016*
C250.0306 (3)0.1145 (4)0.77252 (16)0.0150 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01624 (8)0.01725 (9)0.01946 (9)0.00342 (12)0.00152 (6)0.00022 (11)
O10.0213 (10)0.0127 (9)0.0199 (10)0.0063 (8)0.0062 (8)0.0045 (7)
O20.0185 (9)0.0169 (10)0.0244 (11)0.0079 (8)0.0046 (8)0.0028 (8)
N10.0194 (9)0.0143 (15)0.0179 (10)0.0003 (11)0.0034 (8)0.0009 (10)
N20.0138 (10)0.0164 (12)0.0191 (12)0.0018 (9)0.0047 (9)0.0005 (9)
C10.0256 (14)0.0145 (13)0.0262 (16)0.0040 (13)0.0053 (12)0.0045 (11)
C20.0331 (16)0.0181 (15)0.0238 (16)0.0071 (14)0.0092 (13)0.0106 (12)
C30.0216 (13)0.0248 (14)0.0156 (15)0.0061 (12)0.0021 (11)0.0024 (11)
C40.0139 (12)0.0219 (15)0.0152 (14)0.0027 (11)0.0036 (10)0.0011 (12)
C50.0161 (13)0.0293 (16)0.0149 (14)0.0008 (13)0.0007 (10)0.0035 (12)
C60.0154 (13)0.0245 (15)0.0215 (15)0.0088 (12)0.0008 (10)0.0052 (12)
C70.0181 (13)0.0179 (15)0.0188 (14)0.0042 (11)0.0023 (10)0.0014 (11)
C80.0142 (12)0.0145 (13)0.0143 (13)0.0003 (11)0.0002 (10)0.0000 (10)
C90.0142 (12)0.0143 (13)0.0135 (13)0.0007 (11)0.0030 (9)0.0009 (10)
C100.0208 (13)0.0172 (14)0.0199 (15)0.0023 (12)0.0082 (11)0.0027 (11)
C110.0261 (14)0.0167 (14)0.0257 (16)0.0085 (13)0.0098 (12)0.0039 (12)
C120.0182 (13)0.0228 (15)0.0231 (15)0.0110 (12)0.0071 (11)0.0096 (12)
C130.0141 (11)0.0225 (15)0.0162 (13)0.0030 (10)0.0064 (10)0.0058 (10)
C140.0112 (11)0.0293 (15)0.0177 (14)0.0033 (11)0.0005 (10)0.0069 (10)
C150.0138 (12)0.0278 (16)0.0181 (14)0.0033 (12)0.0000 (10)0.0019 (11)
C160.0162 (12)0.0153 (13)0.0207 (14)0.0018 (11)0.0032 (10)0.0002 (10)
C170.0111 (11)0.0143 (13)0.0172 (14)0.0019 (11)0.0028 (10)0.0028 (10)
C180.0113 (9)0.0151 (11)0.0166 (11)0.0013 (17)0.0052 (8)0.0003 (15)
O30.0224 (10)0.0222 (11)0.0283 (12)0.0065 (9)0.0032 (9)0.0033 (9)
O40.0209 (10)0.0281 (12)0.0268 (12)0.0043 (9)0.0115 (8)0.0011 (9)
O50.0294 (11)0.0195 (11)0.0293 (12)0.0131 (10)0.0006 (9)0.0017 (9)
O60.0213 (10)0.0160 (10)0.0235 (11)0.0028 (8)0.0008 (8)0.0058 (8)
O70.0344 (9)0.0225 (10)0.0200 (9)0.0054 (15)0.0118 (7)0.0024 (13)
O80.0317 (11)0.0166 (11)0.0195 (11)0.0060 (9)0.0027 (8)0.0065 (8)
O90.0211 (8)0.0132 (14)0.0224 (9)0.0063 (9)0.0004 (7)0.0004 (8)
N30.0140 (10)0.0190 (12)0.0169 (12)0.0061 (10)0.0004 (9)0.0041 (9)
N40.0115 (10)0.0166 (12)0.0153 (11)0.0017 (9)0.0004 (8)0.0023 (9)
C190.0078 (11)0.0166 (13)0.0139 (14)0.0039 (10)0.0007 (10)0.0040 (11)
C200.0160 (12)0.0084 (12)0.0140 (13)0.0004 (10)0.0034 (9)0.0006 (9)
C210.0095 (9)0.0131 (18)0.0109 (11)0.0044 (10)0.0009 (8)0.0026 (9)
C220.0084 (11)0.0151 (14)0.0147 (13)0.0009 (10)0.0011 (9)0.0027 (10)
C230.0130 (11)0.0110 (13)0.0139 (12)0.0003 (11)0.0013 (9)0.0003 (10)
C240.0122 (12)0.0145 (14)0.0142 (14)0.0023 (11)0.0028 (10)0.0010 (11)
C250.0151 (12)0.0110 (12)0.0182 (14)0.0005 (11)0.0030 (10)0.0009 (10)
Geometric parameters (Å, º) top
Ag1—N22.183 (2)C12—C131.415 (4)
Ag1—N12.190 (2)C12—H12A0.9300
Ag1—O22.549 (2)C13—C181.415 (4)
Ag1—O12.561 (2)C13—C141.417 (4)
O1—C81.352 (3)C14—C151.361 (4)
O1—H1AA0.9999C14—H14A0.9300
O2—C171.355 (3)C15—C161.406 (4)
O2—H2AA0.7666C15—H15A0.9300
N1—C11.341 (4)C16—C171.367 (4)
N1—C91.366 (4)C16—H16A0.9300
N2—C101.325 (4)C17—C181.430 (5)
N2—C181.368 (4)O3—C221.330 (3)
C1—C21.395 (4)O3—H3B0.8193
C1—H1A0.9300O4—N31.229 (3)
C2—C31.361 (5)O5—N31.220 (3)
C2—H2A0.9300O6—N41.225 (3)
C3—C41.420 (4)O7—N41.217 (3)
C3—H3A0.9300O8—C251.241 (3)
C4—C51.419 (4)O9—C251.274 (3)
C4—C91.422 (4)N3—C191.457 (3)
C5—C61.364 (4)N4—C211.472 (3)
C5—H5A0.9300C19—C201.386 (4)
C6—C71.409 (4)C19—C241.387 (4)
C6—H6A0.9300C20—C211.373 (4)
C7—C81.366 (4)C20—H20A0.9300
C7—H7A0.9300C21—C221.409 (4)
C8—C91.432 (4)C22—C231.421 (4)
C10—C111.407 (4)C23—C241.393 (4)
C10—H10A0.9300C23—C251.507 (4)
C11—C121.354 (4)C24—H24A0.9300
C11—H11A0.9300
N2—Ag1—N1151.54 (9)C10—C11—H11A120.6
N2—Ag1—O268.97 (8)C11—C12—C13120.1 (3)
N1—Ag1—O2138.45 (9)C11—C12—H12A119.9
N2—Ag1—O1138.63 (8)C13—C12—H12A119.9
N1—Ag1—O169.23 (8)C18—C13—C12117.5 (3)
O2—Ag1—O169.67 (6)C18—C13—C14119.5 (3)
C8—O1—Ag1111.74 (16)C12—C13—C14123.0 (3)
C8—O1—H1AA113.3C15—C14—C13120.3 (2)
Ag1—O1—H1AA134.7C15—C14—H14A119.8
C17—O2—Ag1112.59 (16)C13—C14—H14A119.8
C17—O2—H2AA117.9C14—C15—C16120.8 (3)
Ag1—O2—H2AA129.2C14—C15—H15A119.6
C1—N1—C9118.3 (2)C16—C15—H15A119.6
C1—N1—Ag1119.1 (2)C17—C16—C15120.5 (3)
C9—N1—Ag1122.58 (19)C17—C16—H16A119.7
C10—N2—C18118.3 (3)C15—C16—H16A119.7
C10—N2—Ag1118.73 (19)O2—C17—C16123.9 (3)
C18—N2—Ag1123.0 (2)O2—C17—C18115.9 (2)
N1—C1—C2123.3 (3)C16—C17—C18120.3 (2)
N1—C1—H1A118.4N2—C18—C13121.9 (3)
C2—C1—H1A118.4N2—C18—C17119.6 (2)
C3—C2—C1119.4 (3)C13—C18—C17118.6 (3)
C3—C2—H2A120.3C22—O3—H3B109.5
C1—C2—H2A120.3O5—N3—O4124.3 (2)
C2—C3—C4119.6 (3)O5—N3—C19118.3 (2)
C2—C3—H3A120.2O4—N3—C19117.4 (2)
C4—C3—H3A120.2O7—N4—O6124.3 (2)
C5—C4—C3122.8 (3)O7—N4—C21119.0 (2)
C5—C4—C9119.6 (3)O6—N4—C21116.7 (2)
C3—C4—C9117.7 (3)C20—C19—C24122.2 (3)
C6—C5—C4119.9 (3)C20—C19—N3118.7 (3)
C6—C5—H5A120.0C24—C19—N3119.1 (3)
C4—C5—H5A120.0C21—C20—C19118.0 (2)
C5—C6—C7121.2 (3)C21—C20—H20A121.0
C5—C6—H6A119.4C19—C20—H20A121.0
C7—C6—H6A119.4C20—C21—C22122.6 (2)
C8—C7—C6120.5 (3)C20—C21—N4116.7 (2)
C8—C7—H7A119.8C22—C21—N4120.7 (2)
C6—C7—H7A119.8O3—C22—C21122.2 (2)
O1—C8—C7123.1 (2)O3—C22—C23120.1 (3)
O1—C8—C9116.7 (2)C21—C22—C23117.7 (2)
C7—C8—C9120.2 (2)C24—C23—C22119.9 (3)
N1—C9—C4121.7 (2)C24—C23—C25119.5 (2)
N1—C9—C8119.7 (2)C22—C23—C25120.5 (2)
C4—C9—C8118.6 (2)C19—C24—C23119.4 (3)
N2—C10—C11123.4 (3)C19—C24—H24A120.3
N2—C10—H10A118.3C23—C24—H24A120.3
C11—C10—H10A118.3O8—C25—O9125.1 (3)
C12—C11—C10118.9 (3)O8—C25—C23118.7 (2)
C12—C11—H11A120.6O9—C25—C23116.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1AA···O81.001.602.602 (3)175
O2—H2AA···O90.771.882.636 (3)168
O3—H3B···O90.821.742.483 (3)150

Experimental details

Crystal data
Chemical formula[Ag(C9H7NO)2](C7H3N2O7)
Mr625.30
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.0154 (18), 7.6122 (15), 17.138 (3)
β (°) 104.38 (3)
V3)1139.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10841, 4602, 4356
Rint0.022
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.09
No. of reflections4602
No. of parameters353
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.30
Absolute structureFlack (1983), 1770 Friedel pairs
Absolute structure parameter0.006 (18)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1AA···O81.001.602.602 (3)174.7
O2—H2AA···O90.771.882.636 (3)167.9
O3—H3B···O90.821.742.483 (3)150.1
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Thomasson, J. H. (1999). Aust. J. Chem. 52, 317–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001). Aust. J. Chem. 54, 171–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds