organic compounds
Cytosinium–hydrogen maleate–cytosine (1/1/1)
aLaboratoire des Structures, Propriétés et Interactions Inter-Atomiques, Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria, and bDépartement de Chimie, Université Elhadj Lakhdar, Batna 05000, Algeria
*Correspondence e-mail: benalicherif@hotmail.com
The title organic salt, C4H6N3O+·C4H3O4−·C4H5N3O, was synthesized from cytosine base and maleic acid. An intramolecular O—H⋯O hydrogen bond occurs in the hydrogen maleate anion. The crystal packing is stabilized by intermolecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, giving rise to a nearly planar two-dimensional network parallel to (101).
Related literature
For background to cytosine, see: Devlin (1986); Johnson & Coghill (1925); Mahan et al. (2004). For the structure of cytosine, see: Barker & Marsh (1964) and for that of cytosine monohydrate, see: Jeffrey & Kinoshita (1963); Swamy et al. (2001). For the stuctures of inorganic cytosinium salts, see: Mandel (1977); Cherouana et al. (2003); Jaskólski (1989); Bagieu-Beucher (1990) and for those of cytosinium salts of organic acids, see: Gdaniec et al. (1989); Smith et al. (2005); Balasubramanian et al. (1996). For the hydrogen maleate anion, see: Madsen & Larsen (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: KappaCCD Server Software (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809046571/dn2509sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046571/dn2509Isup2.hkl
The title compound was prepared by the reaction between cytosine and maleic acid. A colorless prismatic single-cristals were grown after few days of evaporation at room temperature.
All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atom attached to O atom have been freely refined of water molecule were with Uiso(H) = 1.5Ueq(O).
Data collection: KappaCCD Server Software (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP view of the asymmetric unit of (I) with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Partial packing view showing the formation of the two dimensionnal network through N-H···O, N-H···N and C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x+1/2, -y+1/2, z-1/2] |
C4H6N3O+·C4H3O4−·C4H5N3O | F(000) = 1408 |
Mr = 338.29 | Dx = 1.526 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.3226 (5) Å | Cell parameters from 3490 reflections |
b = 7.3618 (2) Å | θ = 2.8–28.0° |
c = 14.6742 (4) Å | µ = 0.13 mm−1 |
β = 93.905 (1)° | T = 298 K |
V = 2944.77 (13) Å3 | Prism, colourless |
Z = 8 | 0.3 × 0.15 × 0.1 mm |
Nonius KappaCCD diffractometer | 2603 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 28.0°, θmin = 2.8° |
ω–θ scans | h = 0→35 |
3490 measured reflections | k = 0→9 |
3485 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0596P)2 + 1.9669P] where P = (Fo2 + 2Fc2)/3 |
3485 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C4H6N3O+·C4H3O4−·C4H5N3O | V = 2944.77 (13) Å3 |
Mr = 338.29 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.3226 (5) Å | µ = 0.13 mm−1 |
b = 7.3618 (2) Å | T = 298 K |
c = 14.6742 (4) Å | 0.3 × 0.15 × 0.1 mm |
β = 93.905 (1)° |
Nonius KappaCCD diffractometer | 2603 reflections with I > 2σ(I) |
3490 measured reflections | Rint = 0.043 |
3485 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.36 e Å−3 |
3485 reflections | Δρmin = −0.23 e Å−3 |
202 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7B | 0.33929 (4) | 1.06422 (15) | 0.29275 (9) | 0.0427 (3) | |
N1B | 0.40074 (5) | 0.90020 (18) | 0.23748 (9) | 0.0387 (3) | |
H1B | 0.4147 | 0.9976 | 0.2199 | 0.046* | |
N3B | 0.33603 (5) | 0.75680 (17) | 0.30317 (10) | 0.0356 (3) | |
H3B | 0.3085 | 0.7616 | 0.3281 | 0.043* | |
N8B | 0.33306 (6) | 0.44790 (19) | 0.31458 (11) | 0.0497 (4) | |
H8B1 | 0.3055 | 0.4591 | 0.3390 | 0.060* | |
H8B2 | 0.3452 | 0.3417 | 0.3067 | 0.060* | |
C2B | 0.35779 (6) | 0.9147 (2) | 0.27857 (11) | 0.0345 (3) | |
C4B | 0.35667 (6) | 0.5930 (2) | 0.28930 (11) | 0.0377 (4) | |
C5B | 0.40201 (6) | 0.5833 (2) | 0.24822 (12) | 0.0428 (4) | |
H5B | 0.4171 | 0.4722 | 0.2390 | 0.051* | |
C6B | 0.42225 (6) | 0.7386 (2) | 0.22325 (12) | 0.0429 (4) | |
H6B | 0.4518 | 0.7356 | 0.1954 | 0.052* | |
O7A | 0.23768 (4) | 0.47389 (15) | 0.38025 (9) | 0.0467 (3) | |
N1A | 0.17582 (5) | 0.63603 (19) | 0.43517 (10) | 0.0406 (3) | |
H1A | 0.1605 | 0.5378 | 0.4474 | 0.049* | |
N3A | 0.24320 (5) | 0.78198 (17) | 0.37790 (10) | 0.0366 (3) | |
N8A | 0.24807 (6) | 1.09115 (19) | 0.37624 (12) | 0.0508 (4) | |
H8A1 | 0.2757 | 1.0810 | 0.3519 | 0.061* | |
H8A2 | 0.2365 | 1.1970 | 0.3873 | 0.061* | |
C2A | 0.21960 (6) | 0.6237 (2) | 0.39693 (11) | 0.0355 (3) | |
C4A | 0.22347 (6) | 0.9448 (2) | 0.39665 (12) | 0.0378 (4) | |
C5A | 0.17782 (6) | 0.9546 (2) | 0.43695 (13) | 0.0429 (4) | |
H5A | 0.1640 | 1.0659 | 0.4506 | 0.051* | |
C6A | 0.15542 (6) | 0.7983 (2) | 0.45467 (13) | 0.0433 (4) | |
H6A | 0.1254 | 0.8008 | 0.4808 | 0.052* | |
O1 | 0.00023 (4) | 0.51357 (17) | 0.62970 (9) | 0.0448 (3) | |
O2 | −0.05080 (5) | 0.30095 (18) | 0.67256 (10) | 0.0541 (4) | |
O3 | 0.07419 (4) | 0.53110 (16) | 0.54870 (8) | 0.0419 (3) | |
H3 | 0.0374 (7) | 0.532 (3) | 0.5856 (13) | 0.063* | |
O4 | 0.12212 (5) | 0.33885 (18) | 0.48081 (9) | 0.054 | |
C1 | 0.08607 (6) | 0.3706 (2) | 0.52447 (11) | 0.038 | |
C2 | 0.05603 (7) | 0.2114 (2) | 0.54876 (14) | 0.049 | |
H1 | 0.0676 | 0.1001 | 0.5293 | 0.059* | |
C3 | 0.01551 (7) | 0.2018 (2) | 0.59356 (14) | 0.0504 (5) | |
H2 | 0.0033 | 0.0850 | 0.6003 | 0.061* | |
C4 | −0.01358 (6) | 0.3478 (2) | 0.63484 (12) | 0.0402 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7B | 0.0443 (6) | 0.0235 (6) | 0.0615 (8) | 0.0016 (4) | 0.0113 (5) | −0.0015 (5) |
N1B | 0.0405 (7) | 0.0322 (7) | 0.0444 (8) | −0.0021 (5) | 0.0104 (6) | −0.0013 (6) |
N3B | 0.0351 (7) | 0.0245 (6) | 0.0479 (8) | 0.0008 (5) | 0.0077 (6) | −0.0014 (5) |
N8B | 0.0544 (9) | 0.0260 (7) | 0.0704 (10) | 0.0031 (6) | 0.0172 (8) | 0.0006 (7) |
C2B | 0.0369 (8) | 0.0278 (8) | 0.0385 (8) | 0.0007 (6) | 0.0013 (6) | −0.0017 (6) |
C4B | 0.0442 (9) | 0.0267 (8) | 0.0419 (9) | 0.0022 (6) | 0.0008 (7) | −0.0022 (6) |
C5B | 0.0440 (9) | 0.0352 (9) | 0.0500 (10) | 0.0104 (7) | 0.0084 (8) | −0.0028 (7) |
C6B | 0.0408 (9) | 0.0430 (10) | 0.0461 (9) | 0.0061 (7) | 0.0104 (7) | −0.0036 (7) |
O7A | 0.0452 (7) | 0.0239 (6) | 0.0724 (8) | 0.0005 (5) | 0.0135 (6) | −0.0010 (6) |
N1A | 0.0380 (7) | 0.0313 (7) | 0.0533 (8) | −0.0045 (6) | 0.0099 (6) | −0.0021 (6) |
N3A | 0.0374 (7) | 0.0215 (6) | 0.0514 (8) | 0.0010 (5) | 0.0061 (6) | 0.0001 (6) |
N8A | 0.0503 (8) | 0.0243 (7) | 0.0793 (11) | 0.0016 (6) | 0.0165 (8) | −0.0002 (7) |
C2A | 0.0361 (8) | 0.0259 (8) | 0.0446 (9) | 0.0003 (6) | 0.0029 (7) | −0.0001 (6) |
C4A | 0.0392 (8) | 0.0277 (8) | 0.0465 (9) | 0.0027 (6) | 0.0016 (7) | −0.0014 (7) |
C5A | 0.0415 (9) | 0.0325 (8) | 0.0550 (10) | 0.0077 (7) | 0.0059 (7) | −0.0060 (7) |
C6A | 0.0362 (8) | 0.0433 (10) | 0.0510 (10) | 0.0031 (7) | 0.0082 (7) | −0.0062 (8) |
O1 | 0.0403 (6) | 0.0392 (7) | 0.0566 (7) | −0.0014 (5) | 0.0154 (5) | −0.0037 (6) |
O2 | 0.0455 (7) | 0.0501 (8) | 0.0694 (9) | −0.0055 (6) | 0.0239 (6) | 0.0023 (7) |
O3 | 0.0418 (6) | 0.0349 (6) | 0.0506 (7) | −0.0033 (5) | 0.0137 (5) | −0.0028 (5) |
O4 | 0.052 | 0.046 | 0.067 | 0.000 | 0.030 | −0.006 |
C1 | 0.037 | 0.038 | 0.040 | −0.001 | 0.007 | 0.000 |
C2 | 0.053 | 0.031 | 0.067 | 0.002 | 0.020 | −0.002 |
C3 | 0.0526 (10) | 0.0309 (9) | 0.0696 (12) | −0.0038 (7) | 0.0179 (9) | 0.0020 (8) |
C4 | 0.0367 (8) | 0.0401 (9) | 0.0443 (9) | −0.0023 (7) | 0.0067 (7) | 0.0016 (7) |
O7B—C2B | 1.2348 (19) | N3A—C2A | 1.3697 (19) |
N1B—C6B | 1.350 (2) | N8A—C4A | 1.315 (2) |
N1B—C2B | 1.360 (2) | N8A—H8A1 | 0.8600 |
N1B—H1B | 0.8600 | N8A—H8A2 | 0.8600 |
N3B—C4B | 1.353 (2) | C4A—C5A | 1.418 (2) |
N3B—C2B | 1.365 (2) | C5A—C6A | 1.337 (2) |
N3B—H3B | 0.8600 | C5A—H5A | 0.9300 |
N8B—C4B | 1.314 (2) | C6A—H6A | 0.9300 |
N8B—H8B1 | 0.8600 | O1—C4 | 1.281 (2) |
N8B—H8B2 | 0.8600 | O1—H3 | 1.25 (2) |
C4B—C5B | 1.416 (2) | O2—C4 | 1.239 (2) |
C5B—C6B | 1.332 (2) | O3—C1 | 1.282 (2) |
C5B—H5B | 0.9300 | O3—H3 | 1.17 (2) |
C6B—H6B | 0.9300 | O4—C1 | 1.2333 (19) |
O7A—C2A | 1.2398 (19) | C1—C2 | 1.488 (2) |
N1A—C6A | 1.357 (2) | C2—C3 | 1.327 (3) |
N1A—C2A | 1.358 (2) | C2—H1 | 0.9300 |
N1A—H1A | 0.8600 | C3—C4 | 1.490 (3) |
N3A—C4A | 1.3503 (19) | C3—H2 | 0.9300 |
C6B—N1B—C2B | 122.40 (14) | H8A1—N8A—H8A2 | 120.0 |
C6B—N1B—H1B | 118.8 | O7A—C2A—N1A | 121.00 (14) |
C2B—N1B—H1B | 118.8 | O7A—C2A—N3A | 121.13 (14) |
C4B—N3B—C2B | 121.71 (13) | N1A—C2A—N3A | 117.87 (13) |
C4B—N3B—H3B | 119.1 | N8A—C4A—N3A | 117.61 (15) |
C2B—N3B—H3B | 119.1 | N8A—C4A—C5A | 122.06 (15) |
C4B—N8B—H8B1 | 120.0 | N3A—C4A—C5A | 120.33 (15) |
C4B—N8B—H8B2 | 120.0 | C6A—C5A—C4A | 117.66 (15) |
H8B1—N8B—H8B2 | 120.0 | C6A—C5A—H5A | 121.2 |
O7B—C2B—N1B | 121.34 (14) | C4A—C5A—H5A | 121.2 |
O7B—C2B—N3B | 121.59 (14) | C5A—C6A—N1A | 121.10 (15) |
N1B—C2B—N3B | 117.07 (13) | C5A—C6A—H6A | 119.4 |
N8B—C4B—N3B | 117.68 (15) | N1A—C6A—H6A | 119.4 |
N8B—C4B—C5B | 122.64 (15) | C4—O1—H3 | 112.6 (11) |
N3B—C4B—C5B | 119.67 (15) | C1—O3—H3 | 111.8 (12) |
C6B—C5B—C4B | 117.72 (15) | O4—C1—O3 | 123.04 (15) |
C6B—C5B—H5B | 121.1 | O4—C1—C2 | 116.62 (16) |
C4B—C5B—H5B | 121.1 | O3—C1—C2 | 120.34 (14) |
C5B—C6B—N1B | 121.38 (15) | C3—C2—C1 | 130.78 (17) |
C5B—C6B—H6B | 119.3 | C3—C2—H1 | 114.6 |
N1B—C6B—H6B | 119.3 | C1—C2—H1 | 114.6 |
C6A—N1A—C2A | 122.13 (14) | C2—C3—C4 | 130.43 (16) |
C6A—N1A—H1A | 118.9 | C2—C3—H2 | 114.8 |
C2A—N1A—H1A | 118.9 | C4—C3—H2 | 114.8 |
C4A—N3A—C2A | 120.90 (13) | O2—C4—O1 | 123.04 (16) |
C4A—N8A—H8A1 | 120.0 | O2—C4—C3 | 117.21 (16) |
C4A—N8A—H8A2 | 120.0 | O1—C4—C3 | 119.74 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O4 | 0.86 | 1.89 | 2.7426 (19) | 174 |
N1B—H1B···O2i | 0.86 | 1.91 | 2.7701 (19) | 174 |
N8A—H8A1···O7B | 0.86 | 2.00 | 2.8582 (19) | 178 |
N8A—H8A2···O7Aii | 0.86 | 2.04 | 2.8329 (19) | 153 |
N3B—H3B···N3A | 0.86 | 1.98 | 2.8370 (19) | 176 |
N8B—H8B1···O7A | 0.86 | 1.99 | 2.8458 (19) | 173 |
N8B—H8B2···O7Biii | 0.86 | 2.06 | 2.8491 (18) | 153 |
O3—H3···O1 | 1.17 (2) | 1.25 (2) | 2.4167 (16) | 173 (2) |
C6B—H6B···O1i | 0.93 | 2.50 | 3.186 (2) | 131 |
C5B—H5B···O2iv | 0.93 | 2.42 | 3.330 (2) | 165 |
C5A—H5A···O4ii | 0.93 | 2.37 | 3.296 (2) | 175 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H6N3O+·C4H3O4−·C4H5N3O |
Mr | 338.29 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 27.3226 (5), 7.3618 (2), 14.6742 (4) |
β (°) | 93.905 (1) |
V (Å3) | 2944.77 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.3 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3490, 3485, 2603 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.136, 1.07 |
No. of reflections | 3485 |
No. of parameters | 202 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.23 |
Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O4 | 0.86 | 1.89 | 2.7426 (19) | 173.7 |
N1B—H1B···O2i | 0.86 | 1.91 | 2.7701 (19) | 174.2 |
N8A—H8A1···O7B | 0.86 | 2.00 | 2.8582 (19) | 178.2 |
N8A—H8A2···O7Aii | 0.86 | 2.04 | 2.8329 (19) | 152.6 |
N3B—H3B···N3A | 0.86 | 1.98 | 2.8370 (19) | 176.0 |
N8B—H8B1···O7A | 0.86 | 1.99 | 2.8458 (19) | 172.6 |
N8B—H8B2···O7Biii | 0.86 | 2.06 | 2.8491 (18) | 152.5 |
O3—H3···O1 | 1.17 (2) | 1.25 (2) | 2.4167 (16) | 173 (2) |
C6B—H6B···O1i | 0.93 | 2.50 | 3.186 (2) | 130.5 |
C5B—H5B···O2iv | 0.93 | 2.42 | 3.330 (2) | 164.6 |
C5A—H5A···O4ii | 0.93 | 2.37 | 3.296 (2) | 175.1 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and le Centre Universitaire de Khenchela for financial support.
References
Bagieu-Beucher, M. (1990). Acta Cryst. C46, 238–240. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Balasubramanian, T., Muthiah, P. T. & Robinson, W. T. (1996). Bull. Chem. Soc. Jpn, 69, 2919–2922. CrossRef CAS Web of Science Google Scholar
Barker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581–1587. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983–o985. CSD CrossRef IUCr Journals Google Scholar
Devlin, T. M. (1986). Textbook of Biochemistry, 2nd ed., pp. 489–494. New York: McGraw–Hill. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gdaniec, M., Brycki, B. & Szafran, M. (1989). J. Mol. Struct. pp. 57–64. CSD CrossRef Web of Science Google Scholar
Jaskólski, M. (1989). Acta Cryst. C45, 85–89. CSD CrossRef Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. & Kinoshita, Y. (1963). Acta Cryst. 16, 20–28. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Johnson, T. B. & Coghill, R. D. (1925). J. Am. Chem. Soc. 47, 2838–2844. CrossRef CAS Google Scholar
Madsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507–1511. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mahan, S. D., Ireton, G. C., Stoddard, B. L. & Black, M. E. (2004). Mandel, N. S. (1977). Acta Cryst. B33, 1079–1082. Google Scholar
Mandel, N. S. (1977). Acta Cryst. B33, 1079–1082. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. E61, o746–o748. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swamy, K. C. K., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649. PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pyrimidine base, Cytosine, leads to the nucleoside cytidine and its corresponding nucleotide: cytidine 5'-monophosphate. It may be found in very small quantities as a post-modified form, 5-methylcytosine, in certain nucleic acids (Devlin, 1986) such as in tuberculinic acid (Johnson & Coghill, 1925). More recently, 5-fluoro-cytosine (5-FC) has been used as a prodrug in suicide gene therapy of cancer with the crystal structure of bacterial cytosine deaminase (bCD) (Mahan et al., 2004).
The crystal structures of cytosine (Barker & Marsh, 1964) and cytosine monohydrate (Jeffrey & Kinoshita, 1963) were determined many years ago. (Swamy et al., 2001)]. Many inorganic cytosinium salts have been previously synthesized: chloride (Mandel, 1977), nitrate (Cherouana et al., 2003) and dihydrogenphosphate (Jaskólski, 1989; Bagieu-Beucher, 1990). Cytosinium salts of organic acids are also common, the structures of a number of these including trichloroacetate (Gdaniec et al., 1989), Cytosinium 3,5-dinitrosalicylate (Smith, et al., 2005) and hydrogen maleate (Balasubramanian et al., 1996) have been recently reported.
We report here the molecular structure of a novel compound (I) formed from the reaction of cytosine with maleic acid, namely cytosine cytosinium hydrogen maleate. It was prepared in order to extend our study on D—H···A hydrogen bonding in organic systems.
The asymmetric unit in (I) contains a hydrogen maleate anion, a cytosinium cation and a cytosine molecule which are held together by N—H···O and N—H···N hydrogen bonds (Fig. 1; Table 1). As observed in other hydrogen maleate anion, the H atom is roughly in between O1 and O3 (Madsen & Larsen, 1998).
In the crystal packing (Fig.2), cytosine bases and cytosinium cations are linked by N8A–H1N···O7A and N8B–H3N···O7B hydrogen-bonds forming a C(6)R22(8) graph-set motif and yielding infinite chains running parallel to the b axis. These chains are connected through N–H···O and C–H···O hydrogen bonds involving the O2 and O4 atoms of the maleate thus generating R23(10) and R22(7) graph-set motifs (Bernstein et al., 1995) and giving rise to a planar two-dimensionnal network parallel to the (1 0 1) plane (Table 1, Fig. 2).