organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3058-o3059

Cytosinium–hydrogen maleate–cytosine (1/1/1)

aLaboratoire des Structures, Propriétés et Interactions Inter-Atomiques, Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria, and bDépartement de Chimie, Université Elhadj Lakhdar, Batna 05000, Algeria
*Correspondence e-mail: benalicherif@hotmail.com

(Received 1 November 2009; accepted 4 November 2009; online 11 November 2009)

The title organic salt, C4H6N3O+·C4H3O4·C4H5N3O, was synthesized from cytosine base and maleic acid. An intra­molecular O—H⋯O hydrogen bond occurs in the hydrogen maleate anion. The crystal packing is stabilized by inter­molecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, giving rise to a nearly planar two-dimensional network parallel to (101).

Related literature

For background to cytosine, see: Devlin (1986[Devlin, T. M. (1986). Textbook of Biochemistry, 2nd ed., pp. 489-494. New York: McGraw-Hill.]); Johnson & Coghill (1925[Johnson, T. B. & Coghill, R. D. (1925). J. Am. Chem. Soc. 47, 2838-2844.]); Mahan et al. (2004[Mahan, S. D., Ireton, G. C., Stoddard, B. L. & Black, M. E. (2004). Mandel, N. S. (1977). Acta Cryst. B33, 1079-1082.]). For the structure of cytosine, see: Barker & Marsh (1964[Barker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581-1587.]) and for that of cytosine monohydrate, see: Jeffrey & Kinoshita (1963[Jeffrey, G. A. & Kinoshita, Y. (1963). Acta Cryst. 16, 20-28.]); Swamy et al. (2001[Swamy, K. C. K., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642-12649.]). For the stuctures of inorganic cytosinium salts, see: Mandel (1977[Mandel, N. S. (1977). Acta Cryst. B33, 1079-1082.]); Cherouana et al. (2003[Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983-o985.]); Jaskólski (1989[Jaskólski, M. (1989). Acta Cryst. C45, 85-89.]); Bagieu-Beucher (1990[Bagieu-Beucher, M. (1990). Acta Cryst. C46, 238-240.]) and for those of cytosinium salts of organic acids, see: Gdaniec et al. (1989[Gdaniec, M., Brycki, B. & Szafran, M. (1989). J. Mol. Struct. pp. 57-64.]); Smith et al. (2005[Smith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. E61, o746-o748.]); Balasubramanian et al. (1996[Balasubramanian, T., Muthiah, P. T. & Robinson, W. T. (1996). Bull. Chem. Soc. Jpn, 69, 2919-2922.]). For the hydrogen maleate anion, see: Madsen & Larsen (1998[Madsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507-1511.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3O+·C4H3O4·C4H5N3O

  • Mr = 338.29

  • Monoclinic, C 2/c

  • a = 27.3226 (5) Å

  • b = 7.3618 (2) Å

  • c = 14.6742 (4) Å

  • β = 93.905 (1)°

  • V = 2944.77 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.3 × 0.15 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3490 measured reflections

  • 3485 independent reflections

  • 2603 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.07

  • 3485 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O4 0.86 1.89 2.7426 (19) 174
N1B—H1B⋯O2i 0.86 1.91 2.7701 (19) 174
N8A—H8A1⋯O7B 0.86 2.00 2.8582 (19) 178
N8A—H8A2⋯O7Aii 0.86 2.04 2.8329 (19) 153
N3B—H3B⋯N3A 0.86 1.98 2.8370 (19) 176
N8B—H8B1⋯O7A 0.86 1.99 2.8458 (19) 173
N8B—H8B2⋯O7Biii 0.86 2.06 2.8491 (18) 153
O3—H3⋯O1 1.17 (2) 1.25 (2) 2.4167 (16) 173 (2)
C6B—H6B⋯O1i 0.93 2.50 3.186 (2) 131
C5B—H5B⋯O2iv 0.93 2.42 3.330 (2) 165
C5A—H5A⋯O4ii 0.93 2.37 3.296 (2) 175
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The pyrimidine base, Cytosine, leads to the nucleoside cytidine and its corresponding nucleotide: cytidine 5'-monophosphate. It may be found in very small quantities as a post-modified form, 5-methylcytosine, in certain nucleic acids (Devlin, 1986) such as in tuberculinic acid (Johnson & Coghill, 1925). More recently, 5-fluoro-cytosine (5-FC) has been used as a prodrug in suicide gene therapy of cancer with the crystal structure of bacterial cytosine deaminase (bCD) (Mahan et al., 2004).

The crystal structures of cytosine (Barker & Marsh, 1964) and cytosine monohydrate (Jeffrey & Kinoshita, 1963) were determined many years ago. (Swamy et al., 2001)]. Many inorganic cytosinium salts have been previously synthesized: chloride (Mandel, 1977), nitrate (Cherouana et al., 2003) and dihydrogenphosphate (Jaskólski, 1989; Bagieu-Beucher, 1990). Cytosinium salts of organic acids are also common, the structures of a number of these including trichloroacetate (Gdaniec et al., 1989), Cytosinium 3,5-dinitrosalicylate (Smith, et al., 2005) and hydrogen maleate (Balasubramanian et al., 1996) have been recently reported.

We report here the molecular structure of a novel compound (I) formed from the reaction of cytosine with maleic acid, namely cytosine cytosinium hydrogen maleate. It was prepared in order to extend our study on D—H···A hydrogen bonding in organic systems.

The asymmetric unit in (I) contains a hydrogen maleate anion, a cytosinium cation and a cytosine molecule which are held together by N—H···O and N—H···N hydrogen bonds (Fig. 1; Table 1). As observed in other hydrogen maleate anion, the H atom is roughly in between O1 and O3 (Madsen & Larsen, 1998).

In the crystal packing (Fig.2), cytosine bases and cytosinium cations are linked by N8A–H1N···O7A and N8B–H3N···O7B hydrogen-bonds forming a C(6)R22(8) graph-set motif and yielding infinite chains running parallel to the b axis. These chains are connected through N–H···O and C–H···O hydrogen bonds involving the O2 and O4 atoms of the maleate thus generating R23(10) and R22(7) graph-set motifs (Bernstein et al., 1995) and giving rise to a planar two-dimensionnal network parallel to the (1 0 1) plane (Table 1, Fig. 2).

Related literature top

For background to the pyrimidine base, cytosine, see: Devlin (1986); Johnson & Coghill (1925); Mahan et al. (2004). For the structure of cytosine, see: Barker & Marsh (1964) and for that of cytosine monohydrate, see: Jeffrey & Kinoshita (1963); Swamy et al. (2001). For the stuctures of inorganic cytosinium salts, see: Mandel (1977); Cherouana et al. (2003); Jaskólski (1989); Bagieu-Beucher (1990) and for those of cytosinium salts of organic acids, see: Gdaniec et al. (1989); Smith et al. (2005); Balasubramanian et al. (1996). For the hydrogen maleate anion, see: Madsen & Larsen (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction between cytosine and maleic acid. A colorless prismatic single-cristals were grown after few days of evaporation at room temperature.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atom attached to O atom have been freely refined of water molecule were with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of (I) with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view showing the formation of the two dimensionnal network through N-H···O, N-H···N and C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x+1/2, -y+1/2, z-1/2]
cytosinium–hydrogen maleate–cytosine (1/1/1) top
Crystal data top
C4H6N3O+·C4H3O4·C4H5N3OF(000) = 1408
Mr = 338.29Dx = 1.526 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.3226 (5) ÅCell parameters from 3490 reflections
b = 7.3618 (2) Åθ = 2.8–28.0°
c = 14.6742 (4) ŵ = 0.13 mm1
β = 93.905 (1)°T = 298 K
V = 2944.77 (13) Å3Prism, colourless
Z = 80.3 × 0.15 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2603 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ωθ scansh = 035
3490 measured reflectionsk = 09
3485 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0596P)2 + 1.9669P]
where P = (Fo2 + 2Fc2)/3
3485 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C4H6N3O+·C4H3O4·C4H5N3OV = 2944.77 (13) Å3
Mr = 338.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.3226 (5) ŵ = 0.13 mm1
b = 7.3618 (2) ÅT = 298 K
c = 14.6742 (4) Å0.3 × 0.15 × 0.1 mm
β = 93.905 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2603 reflections with I > 2σ(I)
3490 measured reflectionsRint = 0.043
3485 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.36 e Å3
3485 reflectionsΔρmin = 0.23 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O7B0.33929 (4)1.06422 (15)0.29275 (9)0.0427 (3)
N1B0.40074 (5)0.90020 (18)0.23748 (9)0.0387 (3)
H1B0.41470.99760.21990.046*
N3B0.33603 (5)0.75680 (17)0.30317 (10)0.0356 (3)
H3B0.30850.76160.32810.043*
N8B0.33306 (6)0.44790 (19)0.31458 (11)0.0497 (4)
H8B10.30550.45910.33900.060*
H8B20.34520.34170.30670.060*
C2B0.35779 (6)0.9147 (2)0.27857 (11)0.0345 (3)
C4B0.35667 (6)0.5930 (2)0.28930 (11)0.0377 (4)
C5B0.40201 (6)0.5833 (2)0.24822 (12)0.0428 (4)
H5B0.41710.47220.23900.051*
C6B0.42225 (6)0.7386 (2)0.22325 (12)0.0429 (4)
H6B0.45180.73560.19540.052*
O7A0.23768 (4)0.47389 (15)0.38025 (9)0.0467 (3)
N1A0.17582 (5)0.63603 (19)0.43517 (10)0.0406 (3)
H1A0.16050.53780.44740.049*
N3A0.24320 (5)0.78198 (17)0.37790 (10)0.0366 (3)
N8A0.24807 (6)1.09115 (19)0.37624 (12)0.0508 (4)
H8A10.27571.08100.35190.061*
H8A20.23651.19700.38730.061*
C2A0.21960 (6)0.6237 (2)0.39693 (11)0.0355 (3)
C4A0.22347 (6)0.9448 (2)0.39665 (12)0.0378 (4)
C5A0.17782 (6)0.9546 (2)0.43695 (13)0.0429 (4)
H5A0.16401.06590.45060.051*
C6A0.15542 (6)0.7983 (2)0.45467 (13)0.0433 (4)
H6A0.12540.80080.48080.052*
O10.00023 (4)0.51357 (17)0.62970 (9)0.0448 (3)
O20.05080 (5)0.30095 (18)0.67256 (10)0.0541 (4)
O30.07419 (4)0.53110 (16)0.54870 (8)0.0419 (3)
H30.0374 (7)0.532 (3)0.5856 (13)0.063*
O40.12212 (5)0.33885 (18)0.48081 (9)0.054
C10.08607 (6)0.3706 (2)0.52447 (11)0.038
C20.05603 (7)0.2114 (2)0.54876 (14)0.049
H10.06760.10010.52930.059*
C30.01551 (7)0.2018 (2)0.59356 (14)0.0504 (5)
H20.00330.08500.60030.061*
C40.01358 (6)0.3478 (2)0.63484 (12)0.0402 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O7B0.0443 (6)0.0235 (6)0.0615 (8)0.0016 (4)0.0113 (5)0.0015 (5)
N1B0.0405 (7)0.0322 (7)0.0444 (8)0.0021 (5)0.0104 (6)0.0013 (6)
N3B0.0351 (7)0.0245 (6)0.0479 (8)0.0008 (5)0.0077 (6)0.0014 (5)
N8B0.0544 (9)0.0260 (7)0.0704 (10)0.0031 (6)0.0172 (8)0.0006 (7)
C2B0.0369 (8)0.0278 (8)0.0385 (8)0.0007 (6)0.0013 (6)0.0017 (6)
C4B0.0442 (9)0.0267 (8)0.0419 (9)0.0022 (6)0.0008 (7)0.0022 (6)
C5B0.0440 (9)0.0352 (9)0.0500 (10)0.0104 (7)0.0084 (8)0.0028 (7)
C6B0.0408 (9)0.0430 (10)0.0461 (9)0.0061 (7)0.0104 (7)0.0036 (7)
O7A0.0452 (7)0.0239 (6)0.0724 (8)0.0005 (5)0.0135 (6)0.0010 (6)
N1A0.0380 (7)0.0313 (7)0.0533 (8)0.0045 (6)0.0099 (6)0.0021 (6)
N3A0.0374 (7)0.0215 (6)0.0514 (8)0.0010 (5)0.0061 (6)0.0001 (6)
N8A0.0503 (8)0.0243 (7)0.0793 (11)0.0016 (6)0.0165 (8)0.0002 (7)
C2A0.0361 (8)0.0259 (8)0.0446 (9)0.0003 (6)0.0029 (7)0.0001 (6)
C4A0.0392 (8)0.0277 (8)0.0465 (9)0.0027 (6)0.0016 (7)0.0014 (7)
C5A0.0415 (9)0.0325 (8)0.0550 (10)0.0077 (7)0.0059 (7)0.0060 (7)
C6A0.0362 (8)0.0433 (10)0.0510 (10)0.0031 (7)0.0082 (7)0.0062 (8)
O10.0403 (6)0.0392 (7)0.0566 (7)0.0014 (5)0.0154 (5)0.0037 (6)
O20.0455 (7)0.0501 (8)0.0694 (9)0.0055 (6)0.0239 (6)0.0023 (7)
O30.0418 (6)0.0349 (6)0.0506 (7)0.0033 (5)0.0137 (5)0.0028 (5)
O40.0520.0460.0670.0000.0300.006
C10.0370.0380.0400.0010.0070.000
C20.0530.0310.0670.0020.0200.002
C30.0526 (10)0.0309 (9)0.0696 (12)0.0038 (7)0.0179 (9)0.0020 (8)
C40.0367 (8)0.0401 (9)0.0443 (9)0.0023 (7)0.0067 (7)0.0016 (7)
Geometric parameters (Å, º) top
O7B—C2B1.2348 (19)N3A—C2A1.3697 (19)
N1B—C6B1.350 (2)N8A—C4A1.315 (2)
N1B—C2B1.360 (2)N8A—H8A10.8600
N1B—H1B0.8600N8A—H8A20.8600
N3B—C4B1.353 (2)C4A—C5A1.418 (2)
N3B—C2B1.365 (2)C5A—C6A1.337 (2)
N3B—H3B0.8600C5A—H5A0.9300
N8B—C4B1.314 (2)C6A—H6A0.9300
N8B—H8B10.8600O1—C41.281 (2)
N8B—H8B20.8600O1—H31.25 (2)
C4B—C5B1.416 (2)O2—C41.239 (2)
C5B—C6B1.332 (2)O3—C11.282 (2)
C5B—H5B0.9300O3—H31.17 (2)
C6B—H6B0.9300O4—C11.2333 (19)
O7A—C2A1.2398 (19)C1—C21.488 (2)
N1A—C6A1.357 (2)C2—C31.327 (3)
N1A—C2A1.358 (2)C2—H10.9300
N1A—H1A0.8600C3—C41.490 (3)
N3A—C4A1.3503 (19)C3—H20.9300
C6B—N1B—C2B122.40 (14)H8A1—N8A—H8A2120.0
C6B—N1B—H1B118.8O7A—C2A—N1A121.00 (14)
C2B—N1B—H1B118.8O7A—C2A—N3A121.13 (14)
C4B—N3B—C2B121.71 (13)N1A—C2A—N3A117.87 (13)
C4B—N3B—H3B119.1N8A—C4A—N3A117.61 (15)
C2B—N3B—H3B119.1N8A—C4A—C5A122.06 (15)
C4B—N8B—H8B1120.0N3A—C4A—C5A120.33 (15)
C4B—N8B—H8B2120.0C6A—C5A—C4A117.66 (15)
H8B1—N8B—H8B2120.0C6A—C5A—H5A121.2
O7B—C2B—N1B121.34 (14)C4A—C5A—H5A121.2
O7B—C2B—N3B121.59 (14)C5A—C6A—N1A121.10 (15)
N1B—C2B—N3B117.07 (13)C5A—C6A—H6A119.4
N8B—C4B—N3B117.68 (15)N1A—C6A—H6A119.4
N8B—C4B—C5B122.64 (15)C4—O1—H3112.6 (11)
N3B—C4B—C5B119.67 (15)C1—O3—H3111.8 (12)
C6B—C5B—C4B117.72 (15)O4—C1—O3123.04 (15)
C6B—C5B—H5B121.1O4—C1—C2116.62 (16)
C4B—C5B—H5B121.1O3—C1—C2120.34 (14)
C5B—C6B—N1B121.38 (15)C3—C2—C1130.78 (17)
C5B—C6B—H6B119.3C3—C2—H1114.6
N1B—C6B—H6B119.3C1—C2—H1114.6
C6A—N1A—C2A122.13 (14)C2—C3—C4130.43 (16)
C6A—N1A—H1A118.9C2—C3—H2114.8
C2A—N1A—H1A118.9C4—C3—H2114.8
C4A—N3A—C2A120.90 (13)O2—C4—O1123.04 (16)
C4A—N8A—H8A1120.0O2—C4—C3117.21 (16)
C4A—N8A—H8A2120.0O1—C4—C3119.74 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O40.861.892.7426 (19)174
N1B—H1B···O2i0.861.912.7701 (19)174
N8A—H8A1···O7B0.862.002.8582 (19)178
N8A—H8A2···O7Aii0.862.042.8329 (19)153
N3B—H3B···N3A0.861.982.8370 (19)176
N8B—H8B1···O7A0.861.992.8458 (19)173
N8B—H8B2···O7Biii0.862.062.8491 (18)153
O3—H3···O11.17 (2)1.25 (2)2.4167 (16)173 (2)
C6B—H6B···O1i0.932.503.186 (2)131
C5B—H5B···O2iv0.932.423.330 (2)165
C5A—H5A···O4ii0.932.373.296 (2)175
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H6N3O+·C4H3O4·C4H5N3O
Mr338.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.3226 (5), 7.3618 (2), 14.6742 (4)
β (°) 93.905 (1)
V3)2944.77 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3490, 3485, 2603
Rint0.043
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.07
No. of reflections3485
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O40.861.892.7426 (19)173.7
N1B—H1B···O2i0.861.912.7701 (19)174.2
N8A—H8A1···O7B0.862.002.8582 (19)178.2
N8A—H8A2···O7Aii0.862.042.8329 (19)152.6
N3B—H3B···N3A0.861.982.8370 (19)176.0
N8B—H8B1···O7A0.861.992.8458 (19)172.6
N8B—H8B2···O7Biii0.862.062.8491 (18)152.5
O3—H3···O11.17 (2)1.25 (2)2.4167 (16)173 (2)
C6B—H6B···O1i0.932.503.186 (2)130.5
C5B—H5B···O2iv0.932.423.330 (2)164.6
C5A—H5A···O4ii0.932.373.296 (2)175.1
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and le Centre Universitaire de Khenchela for financial support.

References

First citationBagieu-Beucher, M. (1990). Acta Cryst. C46, 238–240.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBalasubramanian, T., Muthiah, P. T. & Robinson, W. T. (1996). Bull. Chem. Soc. Jpn, 69, 2919–2922.  CrossRef CAS Web of Science Google Scholar
First citationBarker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581–1587.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983–o985.  CSD CrossRef IUCr Journals Google Scholar
First citationDevlin, T. M. (1986). Textbook of Biochemistry, 2nd ed., pp. 489–494. New York: McGraw–Hill.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGdaniec, M., Brycki, B. & Szafran, M. (1989). J. Mol. Struct. pp. 57–64.  CSD CrossRef Web of Science Google Scholar
First citationJaskólski, M. (1989). Acta Cryst. C45, 85–89.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. & Kinoshita, Y. (1963). Acta Cryst. 16, 20–28.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJohnson, T. B. & Coghill, R. D. (1925). J. Am. Chem. Soc. 47, 2838–2844.  CrossRef CAS Google Scholar
First citationMadsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507–1511.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahan, S. D., Ireton, G. C., Stoddard, B. L. & Black, M. E. (2004). Mandel, N. S. (1977). Acta Cryst. B33, 1079–1082.  Google Scholar
First citationMandel, N. S. (1977). Acta Cryst. B33, 1079–1082.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. E61, o746–o748.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, K. C. K., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3058-o3059
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds