organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-5,5-di­methyl-2-(2-oxo­propyl)cyclo­hex-2-enone

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico, and bLaboratorio 223, Departamento de Química, Universidad Simón Bolívar (USB), Apartado 47206, Caracas 1080-A, Venezuela
*Correspondence e-mail: robmar@unam.mx, simonho@unam.mx

(Received 10 November 2009; accepted 17 November 2009; online 25 November 2009)

The title compound, C11H16O3, was obtained by reaction of dimedone, 5,5-dimethylcyclohexane-1,3-dione, and α-chloro­acetone. The cyclo­hexenone ring exhibits an envelope conformation with puckering amplitudes Q = 0.433 (2) and Φ = −109.0 (3)°. The 2-oxopropyl fragment is almost perpendicular to the cyclo­hexa­none ring [dihedral angle = 77.72 (8)°]. In the crystal, the mol­ecules are linked to each other through O—H⋯O hydrogen bonding, building a chain parallel to the b axis.

Related literature

The title compound is used in the synthesis of heterocyclic compounds. For the general synthesis of various heterocyclic compounds, see: Knorr (1884[Knorr, L. (1884). Chem. Ber. 17, 1635-1642.]); Paal (1885[Paal, C. (1885). Chem. Ber. 18, 367-371.]); Martínez et al. (1995[Martínez, R., Ávila, G. J. & Reyes, E. (1995). Synth. Commun. 25, 1071-1076.], 2002[Martínez, R., Ávila, G. J., Duran, E. M., Ramírez, M. T., Pérez, A. & Cañas, R. (2002). Bioorg. Med. Chem. 12, 1675-1677.], 2006[Martínez, R., Ávila, G. J., Ramírez, M. T., Pérez, A. & Martínez, A. (2006). Bioorg. Med. Chem. 14, 4007-4016.]). For related structures, see: Nagarajan et al. (1986[Nagarajan, K., Shah, R. K. & Shenoy, S. J. (1986). Indian J. Chem. Sect. B, 25, 697-708.]); Schaeffer & Vince (1962[Schaeffer, H. J. & Vince, R. (1962). J. Org. Chem. 27, 4502-4505.]); Selvanayagam et al. (2003[Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o261-o262.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16O3

  • Mr = 196.24

  • Monoclinic, P 21 /c

  • a = 10.005 (3) Å

  • b = 13.633 (4) Å

  • c = 8.441 (2) Å

  • β = 105.352 (4)°

  • V = 1110.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8977 measured reflections

  • 2032 independent reflections

  • 1573 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.06

  • 2032 reflections

  • 134 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.877 (14) 1.692 (14) 2.5685 (16) 176.9 (18)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-dicarbonyl derivatives are important intermediates in organic chemistry, they have great utility in the synthesis of various heterocyclic compounds. The Paal-Knorr reaction (Knorr, 1884; Paal, 1885) uses 1,4-dicarbonyl compounds to obtain different types of molecules like pyrroles, furans or thiophenes. (Martínez et al., 1995, 2002, 2006).

In the title compound, The cyclohexenone ring adopt an envelope conformation with overall puckering amplitudes Q 0.433 (2) and Φ = -109.0 (3) (Cremer & Pople, 1975), with the keto-enol (O1—C1—C2—C3—O2) fragment planar and the acetonyl moiety is almost perpendicular to this plane making a dihedral angle of 77.72 (8) ° (Fig. 1). Distances and angles agree with values reported in related compounds ( Nagarajan et al., 1986; Schaeffer & Vince, 1962; Selvanayagam, et al., 2003)

In the crystal the molecules are linked to each other through O-H···O hydrogen bonding building a chain parallel to the b axis (Table 1).

Related literature top

For the general synthesis of various heterocyclic compounds, see: Knorr (1884); Paal (1885); Martínez et al. (1995, 2002, 2006). For related structures, see: Nagarajan et al. (1986); Schaeffer & Vince (1962); Selvanayagam et al. (2003). For structural discussion, see: Cremer & Pople (1975).

Experimental top

A slurry of dimedone (0.01 equiv), chloroketone (0.01 equiv), and anhydrous potassium carbonate (0.01 equiv) in chloroform was kept stirred at room temperature for 48 h. The mixture was filtered; the insoluble salts were dissolved in water and the filtered solution was made acidic with concentrated HCl. The precipitate was filtered off and washed with water. Yield 70%. The Melting point (uncorrected) was determined on a Melt-Tem II melting points apparatus: 406–407 K. (Martínez et al., 2006). The title compound (I) was obtained as suitable crystal for X-ray analysis after recrystallization of the solid from 1:1 Methanol-Ethyl Acetate mixture. 1H NMR [200 MHz, CDCl3, δ (p.p.m.)]: 9.0 (brs, 1H), 3.41 (s, 2H), 2.35 (s, 4H), 2.16 (s, 3H), 1.08 (s, 6H).

Refinement top

H atom on hydroxyl group was found in Fourier map and refined with Uiso(H) = 1.2 UeqC(O). H on C atoms were placed in geometrically idealized positions [0.97 Å(CH2) and 0.96 Å (CH3)] and treated as riding on their parent atom with Uiso(H) = 1.2 UeqC(CH2) and 1.5 UeqC(CH3).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of infinite chains parallel to the b axis through O-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+2, y-1/2, -z+1/2]
3-Hydroxy-5,5-dimethyl-2-(2-oxopropyl)cyclohex-2-enone top
Crystal data top
C11H16O3F(000) = 424
Mr = 196.24Dx = 1.174 Mg m3
Monoclinic, P21/cMelting point: 406 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.005 (3) ÅCell parameters from 4286 reflections
b = 13.633 (4) Åθ = 2.5–25.3°
c = 8.441 (2) ŵ = 0.08 mm1
β = 105.352 (4)°T = 298 K
V = 1110.3 (5) Å3Prism, colourless
Z = 40.32 × 0.16 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1573 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.4°, θmin = 2.6°
Detector resolution: 0.83 pixels mm-1h = 1212
ω scansk = 1616
8977 measured reflectionsl = 1010
2032 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.0505P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2032 reflectionsΔρmax = 0.22 e Å3
134 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (5)
Crystal data top
C11H16O3V = 1110.3 (5) Å3
Mr = 196.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.005 (3) ŵ = 0.08 mm1
b = 13.633 (4) ÅT = 298 K
c = 8.441 (2) Å0.32 × 0.16 × 0.15 mm
β = 105.352 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1573 reflections with I > 2σ(I)
8977 measured reflectionsRint = 0.044
2032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
2032 reflectionsΔρmin = 0.19 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96277 (13)0.77843 (7)0.23295 (14)0.0636 (4)
O20.92396 (12)0.44317 (7)0.16061 (14)0.0577 (4)
H20.9653 (18)0.3880 (11)0.199 (2)0.069*
O30.68935 (15)0.65312 (12)0.26209 (17)0.0924 (5)
C11.00978 (16)0.69523 (9)0.27353 (17)0.0457 (4)
C20.94081 (15)0.61103 (9)0.18949 (17)0.0431 (4)
C30.99433 (15)0.52082 (9)0.23391 (17)0.0422 (4)
C41.12691 (15)0.50283 (10)0.36178 (18)0.0467 (4)
H4A1.17570.44950.32550.056*
H4B1.10550.48200.46220.056*
C51.22308 (15)0.59193 (10)0.39985 (17)0.0473 (4)
C61.13588 (17)0.68191 (11)0.41453 (18)0.0529 (4)
H6A1.10690.67660.51510.064*
H6B1.19350.73990.42340.064*
C70.80924 (16)0.62619 (11)0.05840 (18)0.0510 (4)
H7A0.82300.67940.01190.061*
H7B0.79010.56740.00850.061*
C80.68542 (18)0.64907 (12)0.1183 (2)0.0616 (5)
C90.5541 (2)0.6657 (2)0.0119 (3)0.1196 (10)
H9A0.53410.60940.08240.179*
H9B0.56390.72240.07540.179*
H9C0.47960.67620.03820.179*
C101.29416 (18)0.60741 (12)0.26238 (19)0.0609 (5)
H10A1.22520.61470.15960.091*
H10B1.35160.55180.25680.091*
H10C1.35030.66550.28440.091*
C111.33259 (19)0.57556 (14)0.5624 (2)0.0702 (5)
H11A1.38370.51680.55550.105*
H11B1.28800.56910.64960.105*
H11C1.39480.63050.58440.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0798 (8)0.0312 (6)0.0775 (8)0.0051 (5)0.0171 (6)0.0014 (5)
O20.0632 (8)0.0335 (6)0.0708 (7)0.0047 (5)0.0083 (6)0.0065 (5)
O30.0792 (10)0.1301 (13)0.0747 (9)0.0173 (9)0.0326 (8)0.0072 (8)
C10.0586 (9)0.0313 (7)0.0510 (8)0.0022 (6)0.0213 (7)0.0002 (6)
C20.0489 (9)0.0356 (7)0.0451 (8)0.0023 (6)0.0130 (7)0.0011 (6)
C30.0486 (8)0.0330 (7)0.0474 (8)0.0033 (6)0.0171 (7)0.0039 (6)
C40.0524 (9)0.0362 (7)0.0527 (8)0.0045 (6)0.0162 (7)0.0032 (6)
C50.0493 (9)0.0441 (8)0.0460 (8)0.0033 (6)0.0086 (7)0.0012 (6)
C60.0665 (11)0.0404 (8)0.0509 (8)0.0057 (7)0.0136 (8)0.0086 (6)
C70.0573 (10)0.0442 (8)0.0496 (8)0.0046 (7)0.0107 (7)0.0000 (6)
C80.0595 (11)0.0612 (10)0.0649 (11)0.0083 (8)0.0183 (9)0.0112 (8)
C90.0639 (14)0.193 (3)0.0988 (17)0.0375 (16)0.0157 (13)0.0363 (18)
C100.0557 (10)0.0657 (11)0.0631 (10)0.0091 (8)0.0188 (8)0.0028 (8)
C110.0639 (11)0.0764 (12)0.0604 (10)0.0016 (9)0.0008 (9)0.0026 (9)
Geometric parameters (Å, º) top
O1—C11.2409 (16)C6—H6A0.9700
O2—C31.3298 (16)C6—H6B0.9700
O2—H20.877 (14)C7—C81.490 (2)
O3—C81.2050 (19)C7—H7A0.9700
C1—C21.4276 (19)C7—H7B0.9700
C1—C61.499 (2)C8—C91.491 (3)
C2—C31.3541 (18)C9—H9A0.9600
C2—C71.493 (2)C9—H9B0.9600
C3—C41.492 (2)C9—H9C0.9600
C4—C51.530 (2)C10—H10A0.9600
C4—H4A0.9700C10—H10B0.9600
C4—H4B0.9700C10—H10C0.9600
C5—C101.528 (2)C11—H11A0.9600
C5—C111.529 (2)C11—H11B0.9600
C5—C61.529 (2)C11—H11C0.9600
C3—O2—H2111.8 (12)C8—C7—C2115.25 (13)
O1—C1—C2119.99 (14)C8—C7—H7A108.5
O1—C1—C6120.52 (13)C2—C7—H7A108.5
C2—C1—C6119.45 (12)C8—C7—H7B108.5
C3—C2—C1119.28 (13)C2—C7—H7B108.5
C3—C2—C7122.51 (12)H7A—C7—H7B107.5
C1—C2—C7118.19 (12)O3—C8—C7122.90 (16)
O2—C3—C2118.19 (13)O3—C8—C9121.54 (17)
O2—C3—C4117.74 (12)C7—C8—C9115.56 (16)
C2—C3—C4124.07 (12)C8—C9—H9A109.5
C3—C4—C5114.25 (11)C8—C9—H9B109.5
C3—C4—H4A108.7H9A—C9—H9B109.5
C5—C4—H4A108.7C8—C9—H9C109.5
C3—C4—H4B108.7H9A—C9—H9C109.5
C5—C4—H4B108.7H9B—C9—H9C109.5
H4A—C4—H4B107.6C5—C10—H10A109.5
C10—C5—C11109.57 (14)C5—C10—H10B109.5
C10—C5—C6109.94 (12)H10A—C10—H10B109.5
C11—C5—C6109.45 (12)C5—C10—H10C109.5
C10—C5—C4110.09 (12)H10A—C10—H10C109.5
C11—C5—C4109.51 (13)H10B—C10—H10C109.5
C6—C5—C4108.26 (12)C5—C11—H11A109.5
C1—C6—C5114.28 (11)C5—C11—H11B109.5
C1—C6—H6A108.7H11A—C11—H11B109.5
C5—C6—H6A108.7C5—C11—H11C109.5
C1—C6—H6B108.7H11A—C11—H11C109.5
C5—C6—H6B108.7H11B—C11—H11C109.5
H6A—C6—H6B107.6
O1—C1—C2—C3179.22 (13)C3—C4—C5—C11163.65 (13)
C6—C1—C2—C33.0 (2)C3—C4—C5—C644.38 (16)
O1—C1—C2—C72.5 (2)O1—C1—C6—C5150.70 (14)
C6—C1—C2—C7175.23 (13)C2—C1—C6—C531.5 (2)
C1—C2—C3—O2176.08 (12)C10—C5—C6—C169.73 (17)
C7—C2—C3—O22.1 (2)C11—C5—C6—C1169.88 (13)
C1—C2—C3—C43.2 (2)C4—C5—C6—C150.56 (17)
C7—C2—C3—C4178.68 (13)C3—C2—C7—C8102.90 (17)
O2—C3—C4—C5161.35 (13)C1—C2—C7—C875.28 (18)
C2—C3—C4—C519.4 (2)C2—C7—C8—O31.6 (2)
C3—C4—C5—C1075.82 (16)C2—C7—C8—C9179.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.88 (1)1.69 (1)2.5685 (16)177 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H16O3
Mr196.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.005 (3), 13.633 (4), 8.441 (2)
β (°) 105.352 (4)
V3)1110.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8977, 2032, 1573
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.06
No. of reflections2032
No. of parameters134
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.877 (14)1.692 (14)2.5685 (16)176.9 (18)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

JC thanks the Decanato de Investigación y Desarrollo, Dirección de Desarrollo Profesoral Universidad Simón Bolívar, and FONACIT-S3–2009000393 for financial support.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnorr, L. (1884). Chem. Ber. 17, 1635–1642.  CrossRef Google Scholar
First citationMartínez, R., Ávila, G. J., Duran, E. M., Ramírez, M. T., Pérez, A. & Cañas, R. (2002). Bioorg. Med. Chem. 12, 1675–1677.  Google Scholar
First citationMartínez, R., Ávila, G. J., Ramírez, M. T., Pérez, A. & Martínez, A. (2006). Bioorg. Med. Chem. 14, 4007–4016.  Web of Science PubMed Google Scholar
First citationMartínez, R., Ávila, G. J. & Reyes, E. (1995). Synth. Commun. 25, 1071–1076.  Google Scholar
First citationNagarajan, K., Shah, R. K. & Shenoy, S. J. (1986). Indian J. Chem. Sect. B, 25, 697–708.  Google Scholar
First citationPaal, C. (1885). Chem. Ber. 18, 367–371.  CrossRef Google Scholar
First citationSchaeffer, H. J. & Vince, R. (1962). J. Org. Chem. 27, 4502–4505.  CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o261–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds