organic compounds
(2R,3R)-3-(2-Chlorophenyl)-N-phenyloxirane-2-carboxamide
aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn
In the title compound, C15H12ClNO2, the two benzene rings adopt a syn configuration with respect to the epoxy ring; the dihedral angles between the epoxy ring and the two benzene rings are 59.71 (16) and 67.58 (15)°. There is a weak intramolecular N—H⋯O bond, which may help to establish the conformation. In the crystal, the molecules are linked into a chain parallel to the b axis through intermolecular N—H⋯O hydrogen bonds.
Related literature
For the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Flisak et al. (1993); Porter & Skidmore (2000); Shing et al. (2006); Watanabe et al. (1998); Zhu & Espenson (1995). For the isostructuralbromo compound, 3-(2-bromophenyl)-N-phenyloxirane-2-carboxamide, see: He et al. (2009). For related structures, see: He (2009); He & Chen (2009).
Experimental
Crystal data
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809048442/dn2512sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048442/dn2512Isup2.hkl
2-chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (4 ml). To the solution was added 2-chlorophenylaldehyde (0.14 g, 1.0 mmol) at 298 K, the solution was stirred for 2 h and removal of solvent under reduced pressure, the residue was purified through
Colourless single crystals of (I) were obtained by recrystallization from an ethanol solution.All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N)
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H12ClNO2 | F(000) = 568 |
Mr = 273.71 | Dx = 1.344 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9390 reflections |
a = 6.6610 (1) Å | θ = 4.4–72.1° |
b = 10.0343 (2) Å | µ = 2.48 mm−1 |
c = 20.2433 (3) Å | T = 295 K |
V = 1353.03 (4) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.32 × 0.30 mm |
Oxford Diffraction Gemini S Ultra diffractometer | 2373 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2100 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 15.9149 pixels mm-1 | θmax = 70.0°, θmin = 4.4° |
ω scans | h = −4→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −12→12 |
Tmin = 0.469, Tmax = 0.524 | l = −24→24 |
9086 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2775P] where P = (Fo2 + 2Fc2)/3 |
S = 1.20 | (Δ/σ)max < 0.001 |
2373 reflections | Δρmax = 0.15 e Å−3 |
172 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 864 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (2) |
C15H12ClNO2 | V = 1353.03 (4) Å3 |
Mr = 273.71 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 6.6610 (1) Å | µ = 2.48 mm−1 |
b = 10.0343 (2) Å | T = 295 K |
c = 20.2433 (3) Å | 0.36 × 0.32 × 0.30 mm |
Oxford Diffraction Gemini S Ultra diffractometer | 2373 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2100 reflections with I > 2σ(I) |
Tmin = 0.469, Tmax = 0.524 | Rint = 0.026 |
9086 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.109 | Δρmax = 0.15 e Å−3 |
S = 1.20 | Δρmin = −0.26 e Å−3 |
2373 reflections | Absolute structure: Flack (1983), 864 Friedel pairs |
172 parameters | Absolute structure parameter: 0.01 (2) |
0 restraints |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction, 2009) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4506 (5) | 1.0038 (3) | 0.44438 (13) | 0.0628 (7) | |
C2 | 0.2775 (5) | 1.0218 (3) | 0.48079 (15) | 0.0783 (9) | |
H2 | 0.2568 | 1.1009 | 0.5038 | 0.094* | |
C3 | 0.1355 (6) | 0.9220 (4) | 0.48286 (16) | 0.0815 (9) | |
H3 | 0.0200 | 0.9334 | 0.5080 | 0.098* | |
C4 | 0.1626 (5) | 0.8067 (3) | 0.44834 (16) | 0.0785 (8) | |
H4 | 0.0656 | 0.7401 | 0.4495 | 0.094* | |
C5 | 0.3367 (5) | 0.7894 (3) | 0.41138 (14) | 0.0673 (7) | |
H5 | 0.3547 | 0.7109 | 0.3877 | 0.081* | |
C6 | 0.4835 (4) | 0.8867 (2) | 0.40921 (12) | 0.0559 (6) | |
C7 | 0.6754 (4) | 0.8661 (3) | 0.37349 (13) | 0.0602 (6) | |
H7 | 0.7957 | 0.8931 | 0.3979 | 0.072* | |
C8 | 0.6969 (4) | 0.8680 (2) | 0.30113 (13) | 0.0571 (6) | |
H8 | 0.8281 | 0.8969 | 0.2845 | 0.069* | |
C9 | 0.5200 (4) | 0.9026 (2) | 0.25827 (12) | 0.0519 (5) | |
C10 | 0.2091 (4) | 0.8095 (2) | 0.20952 (11) | 0.0485 (5) | |
C11 | 0.0848 (4) | 0.7002 (2) | 0.21366 (14) | 0.0591 (6) | |
H11 | 0.1203 | 0.6288 | 0.2405 | 0.071* | |
C12 | −0.0942 (5) | 0.6958 (3) | 0.17779 (15) | 0.0719 (8) | |
H12 | −0.1769 | 0.6213 | 0.1803 | 0.086* | |
C13 | −0.1475 (5) | 0.8020 (3) | 0.13874 (14) | 0.0737 (8) | |
H13 | −0.2655 | 0.7993 | 0.1142 | 0.088* | |
C14 | −0.0262 (5) | 0.9114 (3) | 0.13617 (14) | 0.0734 (8) | |
H14 | −0.0652 | 0.9840 | 0.1106 | 0.088* | |
C15 | 0.1546 (5) | 0.9176 (3) | 0.17082 (13) | 0.0618 (6) | |
H15 | 0.2366 | 0.9924 | 0.1680 | 0.074* | |
Cl1 | 0.63034 (15) | 1.12873 (8) | 0.44179 (4) | 0.0905 (3) | |
N1 | 0.3914 (3) | 0.80345 (18) | 0.24575 (10) | 0.0524 (5) | |
H1 | 0.4229 | 0.7267 | 0.2616 | 0.063* | |
O1 | 0.6959 (3) | 0.74497 (17) | 0.33669 (10) | 0.0666 (5) | |
O2 | 0.5063 (3) | 1.01692 (16) | 0.23815 (11) | 0.0732 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0775 (18) | 0.0568 (13) | 0.0540 (12) | 0.0057 (14) | −0.0038 (13) | 0.0006 (12) |
C2 | 0.100 (2) | 0.0729 (19) | 0.0619 (15) | 0.0152 (19) | 0.0041 (16) | −0.0041 (14) |
C3 | 0.074 (2) | 0.098 (2) | 0.0730 (17) | 0.004 (2) | 0.0099 (16) | 0.0101 (17) |
C4 | 0.076 (2) | 0.082 (2) | 0.0773 (18) | −0.0094 (18) | −0.0062 (17) | 0.0141 (17) |
C5 | 0.0738 (19) | 0.0615 (15) | 0.0667 (15) | −0.0019 (15) | −0.0138 (15) | 0.0035 (13) |
C6 | 0.0609 (15) | 0.0507 (12) | 0.0561 (12) | 0.0041 (13) | −0.0142 (11) | 0.0003 (11) |
C7 | 0.0592 (16) | 0.0489 (12) | 0.0725 (14) | 0.0062 (13) | −0.0135 (12) | −0.0100 (12) |
C8 | 0.0577 (15) | 0.0389 (11) | 0.0748 (15) | 0.0054 (12) | −0.0031 (12) | −0.0085 (11) |
C9 | 0.0551 (14) | 0.0364 (10) | 0.0640 (13) | −0.0004 (11) | −0.0007 (11) | −0.0090 (10) |
C10 | 0.0525 (14) | 0.0422 (11) | 0.0508 (11) | −0.0012 (11) | 0.0024 (10) | −0.0061 (10) |
C11 | 0.0620 (16) | 0.0448 (12) | 0.0704 (14) | −0.0027 (12) | 0.0007 (12) | −0.0039 (11) |
C12 | 0.0711 (19) | 0.0627 (16) | 0.0817 (18) | −0.0081 (15) | 0.0004 (15) | −0.0113 (14) |
C13 | 0.0618 (17) | 0.089 (2) | 0.0700 (16) | −0.0041 (18) | −0.0101 (14) | −0.0109 (15) |
C14 | 0.0758 (19) | 0.0778 (18) | 0.0666 (15) | 0.0019 (17) | −0.0127 (14) | 0.0110 (14) |
C15 | 0.0706 (17) | 0.0517 (13) | 0.0630 (13) | −0.0048 (13) | −0.0055 (13) | 0.0068 (12) |
Cl1 | 0.1070 (7) | 0.0629 (4) | 0.1016 (5) | −0.0142 (5) | 0.0117 (5) | −0.0220 (4) |
N1 | 0.0576 (12) | 0.0362 (8) | 0.0632 (11) | 0.0002 (9) | −0.0047 (9) | 0.0007 (8) |
O1 | 0.0723 (12) | 0.0446 (9) | 0.0830 (12) | 0.0140 (9) | −0.0153 (10) | −0.0070 (9) |
O2 | 0.0799 (13) | 0.0359 (8) | 0.1039 (14) | −0.0044 (9) | −0.0200 (11) | 0.0020 (9) |
C1—C2 | 1.381 (4) | C8—H8 | 0.9800 |
C1—C6 | 1.391 (3) | C9—O2 | 1.221 (3) |
C1—Cl1 | 1.734 (3) | C9—N1 | 1.337 (3) |
C2—C3 | 1.378 (5) | C10—C11 | 1.377 (3) |
C2—H2 | 0.9300 | C10—C15 | 1.387 (4) |
C3—C4 | 1.364 (5) | C10—N1 | 1.420 (3) |
C3—H3 | 0.9300 | C11—C12 | 1.397 (4) |
C4—C5 | 1.391 (5) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.374 (4) |
C5—C6 | 1.383 (4) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—C14 | 1.364 (4) |
C6—C7 | 1.483 (4) | C13—H13 | 0.9300 |
C7—O1 | 1.432 (3) | C14—C15 | 1.395 (4) |
C7—C8 | 1.472 (4) | C14—H14 | 0.9300 |
C7—H7 | 0.9800 | C15—H15 | 0.9300 |
C8—O1 | 1.429 (3) | N1—H1 | 0.8600 |
C8—C9 | 1.504 (4) | ||
C2—C1—C6 | 121.0 (3) | C7—C8—H8 | 115.6 |
C2—C1—Cl1 | 119.9 (2) | C9—C8—H8 | 115.6 |
C6—C1—Cl1 | 119.1 (2) | O2—C9—N1 | 126.0 (2) |
C3—C2—C1 | 119.6 (3) | O2—C9—C8 | 117.9 (2) |
C3—C2—H2 | 120.2 | N1—C9—C8 | 116.1 (2) |
C1—C2—H2 | 120.2 | C11—C10—C15 | 120.0 (2) |
C4—C3—C2 | 120.7 (3) | C11—C10—N1 | 116.7 (2) |
C4—C3—H3 | 119.7 | C15—C10—N1 | 123.3 (2) |
C2—C3—H3 | 119.7 | C10—C11—C12 | 120.5 (3) |
C3—C4—C5 | 119.5 (3) | C10—C11—H11 | 119.8 |
C3—C4—H4 | 120.3 | C12—C11—H11 | 119.8 |
C5—C4—H4 | 120.3 | C13—C12—C11 | 119.7 (3) |
C6—C5—C4 | 121.2 (3) | C13—C12—H12 | 120.1 |
C6—C5—H5 | 119.4 | C11—C12—H12 | 120.1 |
C4—C5—H5 | 119.4 | C14—C13—C12 | 119.6 (3) |
C5—C6—C1 | 118.0 (3) | C14—C13—H13 | 120.2 |
C5—C6—C7 | 121.7 (2) | C12—C13—H13 | 120.2 |
C1—C6—C7 | 120.2 (2) | C13—C14—C15 | 121.9 (3) |
O1—C7—C8 | 58.96 (16) | C13—C14—H14 | 119.1 |
O1—C7—C6 | 117.0 (2) | C15—C14—H14 | 119.1 |
C8—C7—C6 | 124.5 (2) | C10—C15—C14 | 118.4 (3) |
O1—C7—H7 | 114.8 | C10—C15—H15 | 120.8 |
C8—C7—H7 | 114.8 | C14—C15—H15 | 120.8 |
C6—C7—H7 | 114.8 | C9—N1—C10 | 127.89 (19) |
O1—C8—C7 | 59.12 (16) | C9—N1—H1 | 116.1 |
O1—C8—C9 | 119.1 (2) | C10—N1—H1 | 116.1 |
C7—C8—C9 | 120.1 (2) | C8—O1—C7 | 61.92 (15) |
O1—C8—H8 | 115.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.38 | 2.801 (3) | 111 |
N1—H1···O2i | 0.86 | 2.16 | 2.973 (2) | 158 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H12ClNO2 |
Mr | 273.71 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 6.6610 (1), 10.0343 (2), 20.2433 (3) |
V (Å3) | 1353.03 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.48 |
Crystal size (mm) | 0.36 × 0.32 × 0.30 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini S Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.469, 0.524 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9086, 2373, 2100 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.109, 1.20 |
No. of reflections | 2373 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.26 |
Absolute structure | Flack (1983), 864 Friedel pairs |
Absolute structure parameter | 0.01 (2) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.38 | 2.801 (3) | 110.8 |
N1—H1···O2i | 0.86 | 2.16 | 2.973 (2) | 158.1 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Testing Centre of Sichuan University for the diffraction measurements. We are grateful for financial support from China West Normal University (No. 412374).
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247–6254. CrossRef CAS Web of Science Google Scholar
He, L. (2009). Acta Cryst. E65, o2052. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091. Web of Science CrossRef CAS Google Scholar
Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Optically active epoxides are highly useful intermediates as building blocks for the synthesis of biologically active compounds. They can be further transformed to key intermediates of several pharmaceutical products (Flisak et al. 1993; Porter & Skidmore, 2000; Watanabe et al. 1998; Shing et al., 2006). Various effective systems have been developed over the years for the preparation of chiral epoxides. The Darzens reaction, has proven to be one of the most powerful approaches (Zhu & Espenson,1995). We report herein the crystal structure of the title compound.
The title compound is isostructural of the related bromo compound, 3-(2-Bromophenyl)-N-phenyloxirane-2-carboxamide (He et al., 2009). The two phenyl rings adopt a syn configuration with respect to the epoxy ring (Fig. 1). The dihedral angle between the C1—C6 and C10—C15 is 76.27 (7)° and the O1/C7/C8 epoxide ring makes dihedral angles of 59.71 (16)° and 67.58 (15)° with C6 and C15 phenyl ring, respectively, These values are very similar to those observed in related structures (He, 2009; He & Chen, 2009; He et al., 2009).
There is a weak intramolecular N-H···O bond which might induce the observed conformation. The molecules are linked into a chain parallel to the b axis through intermolecular N-H···O hydrogen bonds (Table 1, Fig. 2).