organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzhydryl phenyl sulfone

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 3 November 2009; accepted 23 November 2009; online 28 November 2009)

In the title compound, C19H16O2S, the sulfur-bound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group, making a dihedral angle of 12.53 (10)°, and forms a dihedral angle of 41.25 (9)° with the other phenyl ring. In the crystal, weak C—H⋯O inter­actions form a two-dimensional network propagating along the bc plane.

Related literature

For background to the sulfone anion, see: da Silva Corrêa et al. (1968[Silva Corrêa, C. M. M. da, Lindsay, A. S. & Waters, W. A. (1968). J. Chem. Soc C., pp. 1872-1874.]); Mayr et al. (2001[Mayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem. Soc. 123, 9500-9512.], 2008[Mayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584-595.]). For a related structure, see: Li et al. (2005[Li, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450-o2451.]). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O2S

  • Mr = 308.40

  • Orthorhombic, P c a 21

  • a = 16.3250 (4) Å

  • b = 5.7979 (1) Å

  • c = 16.4983 (4) Å

  • V = 1561.58 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.20 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 11675 measured reflections

  • 3499 independent reflections

  • 3136 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.04

  • 3499 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1646 Friedel pairs

  • Flack parameter: −0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 1.00 2.46 3.449 (2) 171
C4—H4⋯O1ii 0.95 2.66 3.390 (2) 134
C7—H7⋯O2i 0.95 2.68 3.543 (2) 152
Symmetry codes: (i) x, y+1, z; (ii) [-x, -y, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During our studies on the ambident reactivity of the phenylsulfinate anion we used diarylcarbenium ions (Ar2CH+) as reference electrophiles [Mayr et al. (2001, 2008)] and, hence, obtained the title compound from a reaction of sodium benzenesulfinate with benzhydryl chloride (Ph2CHCl) in dimethyl sulfoxide.

The asymmetric unit of the title compound contains one complete molecule, which is shown in Figure 1. The sulfur-bound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group with an dihedral angle of 12.53 (10)°. The other one forms a dihedral angle of 41.25 (9)° with the phenyl group bound to the sulfur atom.

Three weak C–H···O interactions are found (Table 1) which lead to the formation of a two-dimensional network that propagates along the bc plane (Fig. 2). Contacts of this type have been described for a structure of a related sulfone [Li et al. (2005)]. In terms of graph-set analysis [Bernstein et al. (1995), Etter et al. (1990)], the descriptors on the unitary level are C11(4) for the H1···O2 interaction, C11(6) for the H7···O2 interaction, and C11(7) for the H4···O1 interaction.

Related literature top

For background to the sulfone anion, see: da Silva Corrêa et al. (1968); Mayr et al. (2001, 2008). For a related structure, see: Li et al. (2005). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Benzhydryl Phenyl Sulfone was obtained by heating a mixture of sodium benzenesulfinate (0.21 g, 1.3 mmol) and benzhydryl chloride (0.26 g, 1.3 mmol) in DMSO at 70 °C. After completion of the reaction (4 h), the reaction mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic phase was washed several times with water and dried (MgSO4). A viscous oil was obtained after evaporation of the solvent under reduced pressure that solidified on standing. After column chromatography (silica gel, isohexane/EtOAc = 9/1), benzhydryl phenyl sulfone was isolated as colorless solid (0.33 g, 82%). A small amount of the title compound was dissolved in ethyl acetate. The solvent was allowed to evaporate slowly at room temperature. After 2 days crystals had formed that were suitable for X-ray analysis. mp 189 °C (186–187 °C [da Silva Corrêa et al. (1968)]).

Refinement top

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 1.00 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Weak intermolecular hydrogen bonds of the type C–H···O leading to a two-dimensional network that propagates along the bc plane (viewing direction approximately along [110]). Color scheme for dashed lines: blue: H1···O2 contacts, red: H7···O2 contacts, green: H4···O1 contacts.
Benzhydryl phenyl sulfone top
Crystal data top
C19H16O2SF(000) = 648
Mr = 308.40Dx = 1.312 (1) Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6504 reflections
a = 16.3250 (4) Åθ = 3.1–27.5°
b = 5.7979 (1) ŵ = 0.21 mm1
c = 16.4983 (4) ÅT = 200 K
V = 1561.58 (6) Å3Rod, colourless
Z = 40.20 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
3136 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.027
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.5°
Detector resolution: 9 pixels mm-1h = 2121
CCD; rotation images; thick slices, phi/ω–scank = 76
11675 measured reflectionsl = 2120
3499 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2163P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3499 reflectionsΔρmax = 0.14 e Å3
199 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1646 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C19H16O2SV = 1561.58 (6) Å3
Mr = 308.40Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 16.3250 (4) ŵ = 0.21 mm1
b = 5.7979 (1) ÅT = 200 K
c = 16.4983 (4) Å0.20 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
3136 reflections with I > 2σ(I)
11675 measured reflectionsRint = 0.027
3499 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.28 e Å3
3499 reflectionsAbsolute structure: Flack (1983), 1646 Friedel pairs
199 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06340 (2)0.12898 (6)0.26302 (3)0.02887 (10)
O10.08669 (8)0.1945 (2)0.34378 (7)0.0408 (3)
O20.03981 (7)0.10715 (19)0.24877 (8)0.0384 (3)
C10.01788 (10)0.3229 (3)0.23092 (10)0.0276 (3)
H10.00340.48200.24090.033*
C20.03155 (9)0.3073 (3)0.14009 (10)0.0272 (3)
C30.06491 (11)0.1160 (3)0.10143 (11)0.0347 (4)
H30.08160.01390.13240.042*
C40.07391 (11)0.1141 (3)0.01781 (12)0.0405 (4)
H40.09640.01800.00800.049*
C50.05082 (12)0.2999 (4)0.02807 (12)0.0428 (4)
H50.05760.29700.08530.051*
C60.01740 (12)0.4927 (4)0.00955 (13)0.0451 (5)
H60.00080.62180.02180.054*
C70.00847 (11)0.4955 (3)0.09276 (11)0.0363 (4)
H70.01380.62830.11820.044*
C80.09145 (10)0.2969 (3)0.28610 (9)0.0304 (4)
C90.14154 (12)0.1021 (3)0.28814 (12)0.0431 (4)
H90.12900.02740.25510.052*
C100.20970 (13)0.0971 (4)0.33832 (13)0.0500 (5)
H100.24440.03430.33830.060*
C110.22748 (13)0.2805 (4)0.38811 (13)0.0531 (5)
H110.27400.27510.42270.064*
C120.17763 (14)0.4719 (4)0.38771 (14)0.0547 (5)
H120.18950.59850.42230.066*
C130.10994 (12)0.4802 (3)0.33668 (11)0.0406 (4)
H130.07600.61330.33650.049*
C140.14411 (10)0.2005 (3)0.19613 (10)0.0292 (3)
C150.18653 (11)0.4044 (3)0.20890 (12)0.0407 (4)
H150.17390.50020.25390.049*
C160.24784 (12)0.4662 (3)0.15468 (14)0.0479 (5)
H160.27750.60550.16230.057*
C170.26549 (12)0.3259 (4)0.09010 (13)0.0503 (5)
H170.30750.36910.05320.060*
C180.22315 (13)0.1231 (4)0.07798 (14)0.0517 (5)
H180.23640.02670.03330.062*
C190.16122 (12)0.0598 (3)0.13093 (12)0.0403 (4)
H190.13110.07820.12240.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03180 (18)0.02898 (18)0.02584 (18)0.00027 (14)0.00044 (18)0.00176 (17)
O10.0447 (7)0.0530 (8)0.0247 (6)0.0025 (6)0.0042 (5)0.0005 (5)
O20.0408 (6)0.0273 (6)0.0471 (9)0.0006 (4)0.0029 (6)0.0047 (5)
C10.0315 (8)0.0251 (8)0.0263 (8)0.0019 (6)0.0000 (7)0.0014 (6)
C20.0257 (7)0.0301 (8)0.0258 (8)0.0028 (6)0.0008 (6)0.0011 (6)
C30.0384 (9)0.0357 (9)0.0301 (9)0.0062 (7)0.0017 (7)0.0001 (7)
C40.0394 (9)0.0507 (11)0.0312 (10)0.0053 (8)0.0032 (8)0.0060 (8)
C50.0423 (10)0.0597 (12)0.0262 (9)0.0046 (9)0.0005 (8)0.0006 (8)
C60.0561 (13)0.0471 (11)0.0321 (9)0.0014 (9)0.0063 (9)0.0098 (7)
C70.0440 (10)0.0316 (9)0.0334 (9)0.0002 (7)0.0045 (7)0.0013 (7)
C80.0327 (8)0.0324 (8)0.0261 (9)0.0015 (6)0.0017 (6)0.0028 (6)
C90.0433 (10)0.0450 (11)0.0410 (11)0.0093 (8)0.0040 (8)0.0017 (8)
C100.0403 (10)0.0638 (13)0.0460 (12)0.0138 (9)0.0040 (9)0.0146 (10)
C110.0409 (10)0.0738 (14)0.0445 (12)0.0098 (10)0.0133 (9)0.0159 (11)
C120.0575 (13)0.0597 (13)0.0470 (12)0.0113 (10)0.0174 (10)0.0022 (10)
C130.0465 (10)0.0412 (10)0.0340 (10)0.0044 (8)0.0048 (8)0.0049 (8)
C140.0270 (8)0.0333 (8)0.0273 (8)0.0008 (6)0.0026 (7)0.0016 (7)
C150.0384 (10)0.0429 (10)0.0409 (11)0.0064 (8)0.0044 (8)0.0039 (8)
C160.0340 (9)0.0507 (11)0.0589 (13)0.0111 (9)0.0065 (9)0.0088 (10)
C170.0320 (9)0.0683 (13)0.0505 (12)0.0027 (9)0.0089 (9)0.0144 (10)
C180.0466 (11)0.0625 (13)0.0459 (12)0.0048 (9)0.0128 (10)0.0074 (10)
C190.0402 (9)0.0394 (9)0.0414 (11)0.0016 (8)0.0045 (8)0.0056 (8)
Geometric parameters (Å, º) top
S1—O11.4366 (13)C9—C101.387 (3)
S1—O21.4415 (12)C9—H90.9500
S1—C141.7681 (17)C10—C111.374 (3)
S1—C11.8180 (16)C10—H100.9500
C1—C81.514 (2)C11—C121.376 (3)
C1—C21.518 (2)C11—H110.9500
C1—H11.0000C12—C131.390 (3)
C2—C31.390 (2)C12—H120.9500
C2—C71.394 (2)C13—H130.9500
C3—C41.387 (3)C14—C191.379 (2)
C3—H30.9500C14—C151.386 (2)
C4—C51.369 (3)C15—C161.389 (3)
C4—H40.9500C15—H150.9500
C5—C61.390 (3)C16—C171.371 (3)
C5—H50.9500C16—H160.9500
C6—C71.381 (3)C17—C181.378 (3)
C6—H60.9500C17—H170.9500
C7—H70.9500C18—C191.386 (3)
C8—C131.385 (2)C18—H180.9500
C8—C91.395 (3)C19—H190.9500
O1—S1—O2118.23 (7)C10—C9—C8120.08 (19)
O1—S1—C14108.64 (8)C10—C9—H9120.0
O2—S1—C14108.67 (8)C8—C9—H9120.0
O1—S1—C1107.45 (8)C11—C10—C9120.67 (19)
O2—S1—C1110.16 (7)C11—C10—H10119.7
C14—S1—C1102.53 (8)C9—C10—H10119.7
C8—C1—C2118.10 (14)C10—C11—C12119.74 (19)
C8—C1—S1110.02 (11)C10—C11—H11120.1
C2—C1—S1110.99 (11)C12—C11—H11120.1
C8—C1—H1105.6C11—C12—C13120.05 (19)
C2—C1—H1105.6C11—C12—H12120.0
S1—C1—H1105.6C13—C12—H12120.0
C3—C2—C7118.25 (15)C8—C13—C12120.79 (18)
C3—C2—C1123.92 (15)C8—C13—H13119.6
C7—C2—C1117.83 (14)C12—C13—H13119.6
C4—C3—C2120.27 (16)C19—C14—C15121.46 (17)
C4—C3—H3119.9C19—C14—S1119.94 (13)
C2—C3—H3119.9C15—C14—S1118.53 (13)
C5—C4—C3120.94 (18)C14—C15—C16118.82 (18)
C5—C4—H4119.5C14—C15—H15120.6
C3—C4—H4119.5C16—C15—H15120.6
C4—C5—C6119.59 (18)C17—C16—C15119.91 (18)
C4—C5—H5120.2C17—C16—H16120.0
C6—C5—H5120.2C15—C16—H16120.0
C7—C6—C5119.67 (18)C16—C17—C18120.89 (19)
C7—C6—H6120.2C16—C17—H17119.6
C5—C6—H6120.2C18—C17—H17119.6
C6—C7—C2121.27 (17)C17—C18—C19120.03 (19)
C6—C7—H7119.4C17—C18—H18120.0
C2—C7—H7119.4C19—C18—H18120.0
C13—C8—C9118.64 (17)C14—C19—C18118.88 (18)
C13—C8—C1117.33 (15)C14—C19—H19120.6
C9—C8—C1124.03 (15)C18—C19—H19120.6
O1—S1—C1—C861.76 (13)C13—C8—C9—C101.9 (3)
O2—S1—C1—C868.31 (13)C1—C8—C9—C10177.35 (17)
C14—S1—C1—C8176.16 (11)C8—C9—C10—C111.8 (3)
O1—S1—C1—C2165.65 (11)C9—C10—C11—C120.6 (3)
O2—S1—C1—C264.28 (13)C10—C11—C12—C130.5 (3)
C14—S1—C1—C251.25 (12)C9—C8—C13—C120.9 (3)
C8—C1—C2—C359.0 (2)C1—C8—C13—C12178.46 (18)
S1—C1—C2—C369.33 (18)C11—C12—C13—C80.3 (3)
C8—C1—C2—C7121.61 (17)O1—S1—C14—C19144.32 (14)
S1—C1—C2—C7110.03 (15)O2—S1—C14—C1914.45 (16)
C7—C2—C3—C40.6 (3)C1—S1—C14—C19102.16 (15)
C1—C2—C3—C4178.76 (17)O1—S1—C14—C1538.52 (16)
C2—C3—C4—C50.5 (3)O2—S1—C14—C15168.39 (13)
C3—C4—C5—C60.4 (3)C1—S1—C14—C1575.01 (15)
C4—C5—C6—C70.5 (3)C19—C14—C15—C160.3 (3)
C5—C6—C7—C20.7 (3)S1—C14—C15—C16177.45 (15)
C3—C2—C7—C60.7 (3)C14—C15—C16—C170.2 (3)
C1—C2—C7—C6178.68 (17)C15—C16—C17—C180.0 (3)
C2—C1—C8—C13120.05 (16)C16—C17—C18—C190.7 (3)
S1—C1—C8—C13111.14 (15)C15—C14—C19—C181.0 (3)
C2—C1—C8—C959.2 (2)S1—C14—C19—C18178.09 (15)
S1—C1—C8—C969.59 (19)C17—C18—C19—C141.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i1.002.463.449 (2)171
C4—H4···O1ii0.952.663.390 (2)134
C7—H7···O2i0.952.683.543 (2)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16O2S
Mr308.40
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)200
a, b, c (Å)16.3250 (4), 5.7979 (1), 16.4983 (4)
V3)1561.58 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11675, 3499, 3136
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.04
No. of reflections3499
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.28
Absolute structureFlack (1983), 1646 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i1.002.463.449 (2)171
C4—H4···O1ii0.952.663.390 (2)134
C7—H7···O2i0.952.683.543 (2)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLi, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450–o2451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem. Soc. 123, 9500–9512.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584–595.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva Corrêa, C. M. M. da, Lindsay, A. S. & Waters, W. A. (1968). J. Chem. Soc C., pp. 1872–1874.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds