organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-2,4-bis­­(2-meth­oxy­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 16 September 2009; accepted 12 November 2009; online 18 November 2009)

The crystal structure of the title compound, C23H27NO3, shows that the compound exists in a chair–chair conformation with an equatorial disposition of 2-methoxy­phenyl groups at an angle of 39.94 (3)° with respect to each other. An inter­molecular N—H⋯π inter­action is observed in the crystal packing.

Related literature

For the biological activity of 3-aza­bicyclo­nona­nes, see: Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For related structures with similar conformations, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.]); Parthiban, Ramkumar & Jeong (2009[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009). Acta Cryst. E65, o1596.]); Parthiban, Ramkumar, Kim et al. (2009[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009). Acta Cryst. E65, o1383.]). For a related structure with a chair–boat conformation, see: Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]). For a related structure with a boat–boat conformation, see: Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27NO3

  • Mr = 365.46

  • Monoclinic, P 21 /n

  • a = 7.9569 (3) Å

  • b = 20.8291 (9) Å

  • c = 11.6708 (6) Å

  • β = 96.297 (2)°

  • V = 1922.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.41 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.288, Tmax = 0.980

  • 14049 measured reflections

  • 4608 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.02

  • 4608 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACg1i 0.862 (15) 2.852 (3) 3.6276 (14) 150.6 (12)
Symmetry code: (i) -x+1, -y, -z+1. Cg1 is the centroid of the C16–C21 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Azabicyclononanes are an important class of heterocycles due to their broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008; Parthiban, Ramkumar & Jeong, 2009; Parthiban, Ramkumar, Kim et al., 2009), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound.

The analysis of torsion angles, asymmetry parameters and least-squares planes calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation with deviations of the ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.655 (3) Å and -0.708 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.0341 (15) Å and q3 =0.6123 (15) Å (Nardelli, 1983). The total puckering amplitude, QT = 0.6132 (15) Å and θ = 3.14 (14) ° (Cremer & Pople, 1975). The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.697 (4) Å and 0.535 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.1216 (17) Å and q3 = 0.5322 (17) Å (Nardelli, 1983); total puckering amplitude, QT = 0.5460 (16) Å, and θ =12.87 (18)° (Cremer & Pople, 1975). Hence, the title compound C23H27NO3, exists in a chair-chair conformation with an equatorial orientation of the ortho-methoxyphenyl groups on the heterocycle, which are orientated at an angle of 39.94 (3)° with respect to each other. The crystal structure is stabilized by an intermolecular N-H···π interaction between N1-H1A and the C16/C17/C18/C19/C20/C21 ring in a neighbouring molecule [N···centroid distance of 2.852 (3)Å; symmetry operator: 1-x,-y,1-z].

Related literature top

For the biological activity of 3-azabicyclononanes, see: Barker et al. (2005); Hardick et al. (1996); Jeyaraman & Avila (1981). For related structures with similar conformations, see: Parthiban et al. (2008); Parthiban, Ramkumar & Jeong (2009); Parthiban, Ramkumar, Kim et al. (2009). For a related structure with a chair–boat conformation, see: Smith-Verdier et al. (1983). For a related structure with a boat–boat conformation, see: Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983). Cg1 is the centroid of the C16–C21 ring.

Experimental top

A mixture of 2-methylcyclohexanone (0.05 mol, 5.61 g) and ortho-methoxybenzaldehyde (0.1 mol, 13.62 g) was added to a warm solution of ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring until a yellow color was obtained during the mixing of the reactants and then allowed to stir at 303–308° K until formation of the product. At the end, the crude azabicyclic ketone was separated by filtration and washed with a 1:5 ethanol-ether mixture until the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 1-methyl-2,4-bis(2-methoxyphenyl)-3- azabicyclo[3.3.1]nonan-9-one.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecule, showing the atom numbering scheme, with atoms represented as 30% probability ellipsoids.
1-Methyl-2,4-bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C23H27NO3F(000) = 784
Mr = 365.46Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4178 reflections
a = 7.9569 (3) Åθ = 2.6–28.0°
b = 20.8291 (9) ŵ = 0.08 mm1
c = 11.6708 (6) ÅT = 298 K
β = 96.297 (2)°Block, colourless
V = 1922.59 (15) Å30.41 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4608 independent reflections
Radiation source: fine-focus sealed tube3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 810
Tmin = 0.288, Tmax = 0.980k = 2727
14049 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4061P]
where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H27NO3V = 1922.59 (15) Å3
Mr = 365.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9569 (3) ŵ = 0.08 mm1
b = 20.8291 (9) ÅT = 298 K
c = 11.6708 (6) Å0.41 × 0.24 × 0.20 mm
β = 96.297 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4608 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3166 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.980Rint = 0.026
14049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
4608 reflectionsΔρmin = 0.21 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23693 (17)0.12454 (6)0.28186 (12)0.0323 (3)
H10.16690.12690.34580.039*
C20.11755 (18)0.10977 (7)0.16904 (12)0.0363 (3)
C30.2099 (2)0.10169 (8)0.06003 (13)0.0431 (4)
H3A0.12540.09720.00600.052*
H3B0.27250.14080.04920.052*
C40.3315 (2)0.04531 (8)0.06032 (14)0.0473 (4)
H4A0.43470.05570.10890.057*
H4B0.36040.03850.01740.057*
C50.2575 (2)0.01655 (8)0.10382 (14)0.0465 (4)
H5A0.34830.04730.12110.056*
H5B0.17900.03450.04270.056*
C60.16498 (18)0.00768 (7)0.21184 (13)0.0372 (3)
H60.10500.04750.22560.045*
C70.27979 (17)0.01007 (6)0.32297 (12)0.0321 (3)
H70.20890.01400.38620.039*
C80.03777 (19)0.04528 (7)0.19078 (12)0.0383 (3)
C90.33357 (18)0.18729 (6)0.27865 (12)0.0334 (3)
C100.49093 (19)0.18943 (7)0.23764 (14)0.0407 (4)
H100.53440.15220.20820.049*
C110.5850 (2)0.24549 (8)0.23944 (15)0.0479 (4)
H110.69030.24570.21190.058*
C120.5214 (2)0.30076 (8)0.28224 (16)0.0505 (4)
H120.58390.33850.28360.061*
C130.3655 (2)0.30062 (7)0.32316 (14)0.0452 (4)
H130.32300.33830.35160.054*
C140.27187 (19)0.24449 (7)0.32211 (12)0.0370 (3)
C150.0179 (2)0.16144 (8)0.14796 (16)0.0530 (4)
H15A0.09810.14900.08430.079*
H15B0.03400.20140.13050.079*
H15C0.07480.16650.21580.079*
C160.41183 (18)0.04090 (6)0.35486 (12)0.0325 (3)
C170.36550 (18)0.09743 (7)0.40848 (12)0.0355 (3)
C180.4828 (2)0.14549 (7)0.43706 (13)0.0432 (4)
H180.45060.18310.47170.052*
C190.6482 (2)0.13728 (8)0.41378 (14)0.0487 (4)
H190.72710.16950.43300.058*
C200.6970 (2)0.08216 (8)0.36268 (15)0.0497 (4)
H200.80870.07670.34810.060*
C210.57849 (19)0.03438 (7)0.33286 (14)0.0421 (4)
H210.61180.00280.29740.050*
C220.0402 (2)0.29848 (8)0.39536 (17)0.0566 (5)
H22A0.10560.31740.46080.085*
H22B0.07170.28940.41430.085*
H22C0.03390.32780.33160.085*
C230.1527 (3)0.15186 (11)0.49954 (19)0.0793 (7)
H23A0.16580.19200.46100.119*
H23B0.03680.14660.51340.119*
H23C0.22350.15150.57170.119*
N10.35903 (15)0.07229 (5)0.30669 (11)0.0324 (3)
O10.11245 (14)0.03744 (6)0.19326 (12)0.0606 (4)
O20.11835 (14)0.24067 (5)0.36491 (10)0.0498 (3)
O30.19994 (13)0.10095 (5)0.42960 (10)0.0484 (3)
H1A0.4203 (18)0.0824 (7)0.3696 (13)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (7)0.0274 (7)0.0357 (7)0.0025 (5)0.0074 (6)0.0021 (6)
C20.0341 (8)0.0356 (8)0.0387 (8)0.0037 (6)0.0025 (6)0.0037 (6)
C30.0492 (9)0.0446 (9)0.0360 (8)0.0024 (7)0.0065 (7)0.0062 (7)
C40.0524 (10)0.0531 (10)0.0386 (8)0.0012 (8)0.0149 (7)0.0044 (7)
C50.0556 (10)0.0417 (9)0.0415 (9)0.0027 (7)0.0019 (7)0.0094 (7)
C60.0371 (8)0.0303 (7)0.0437 (8)0.0074 (6)0.0027 (6)0.0005 (6)
C70.0336 (7)0.0281 (7)0.0356 (7)0.0004 (6)0.0079 (6)0.0008 (6)
C80.0346 (8)0.0454 (9)0.0344 (7)0.0040 (7)0.0021 (6)0.0012 (6)
C90.0375 (8)0.0278 (7)0.0352 (7)0.0011 (6)0.0047 (6)0.0033 (6)
C100.0406 (8)0.0338 (8)0.0490 (9)0.0025 (6)0.0104 (7)0.0025 (7)
C110.0397 (9)0.0431 (9)0.0625 (11)0.0038 (7)0.0124 (8)0.0071 (8)
C120.0538 (10)0.0348 (9)0.0637 (11)0.0107 (7)0.0096 (8)0.0045 (8)
C130.0571 (10)0.0285 (8)0.0511 (9)0.0001 (7)0.0099 (8)0.0009 (7)
C140.0426 (8)0.0314 (7)0.0379 (8)0.0021 (6)0.0085 (6)0.0037 (6)
C150.0466 (10)0.0492 (10)0.0613 (11)0.0119 (8)0.0018 (8)0.0049 (8)
C160.0365 (8)0.0272 (7)0.0340 (7)0.0002 (6)0.0053 (6)0.0024 (6)
C170.0404 (8)0.0320 (7)0.0337 (7)0.0031 (6)0.0025 (6)0.0014 (6)
C180.0578 (10)0.0298 (7)0.0408 (8)0.0021 (7)0.0006 (7)0.0024 (6)
C190.0536 (10)0.0414 (9)0.0498 (9)0.0186 (8)0.0003 (8)0.0031 (7)
C200.0395 (9)0.0502 (10)0.0608 (10)0.0094 (7)0.0116 (8)0.0031 (8)
C210.0401 (8)0.0365 (8)0.0510 (9)0.0002 (7)0.0117 (7)0.0023 (7)
C220.0599 (11)0.0430 (10)0.0702 (12)0.0106 (8)0.0220 (9)0.0069 (8)
C230.0611 (13)0.0974 (16)0.0793 (14)0.0177 (11)0.0073 (11)0.0504 (13)
N10.0324 (6)0.0256 (6)0.0383 (7)0.0002 (5)0.0004 (5)0.0006 (5)
O10.0336 (6)0.0681 (8)0.0795 (9)0.0079 (6)0.0039 (6)0.0119 (7)
O20.0552 (7)0.0316 (6)0.0678 (8)0.0036 (5)0.0292 (6)0.0024 (5)
O30.0429 (6)0.0469 (7)0.0564 (7)0.0067 (5)0.0093 (5)0.0167 (5)
Geometric parameters (Å, º) top
C1—N11.4663 (17)C12—C131.377 (2)
C1—C91.5191 (19)C12—H120.9300
C1—C21.5672 (19)C13—C141.386 (2)
C1—H10.9800C13—H130.9300
C2—C81.519 (2)C14—O21.3719 (17)
C2—C151.524 (2)C15—H15A0.9600
C2—C31.547 (2)C15—H15B0.9600
C3—C41.521 (2)C15—H15C0.9600
C3—H3A0.9700C16—C211.385 (2)
C3—H3B0.9700C16—C171.4016 (19)
C4—C51.526 (2)C17—O31.3685 (17)
C4—H4A0.9700C17—C181.384 (2)
C4—H4B0.9700C18—C191.384 (2)
C5—C61.539 (2)C18—H180.9300
C5—H5A0.9700C19—C201.369 (2)
C5—H5B0.9700C19—H190.9300
C6—C81.499 (2)C20—C211.389 (2)
C6—C71.547 (2)C20—H200.9300
C6—H60.9800C21—H210.9300
C7—N11.4628 (17)C22—O21.4181 (18)
C7—C161.5111 (19)C22—H22A0.9600
C7—H70.9800C22—H22B0.9600
C8—O11.2099 (18)C22—H22C0.9600
C9—C101.389 (2)C23—O31.414 (2)
C9—C141.4044 (19)C23—H23A0.9600
C10—C111.386 (2)C23—H23B0.9600
C10—H100.9300C23—H23C0.9600
C11—C121.373 (2)N1—H1A0.862 (15)
C11—H110.9300
N1—C1—C9108.50 (11)C12—C11—H11120.3
N1—C1—C2110.35 (11)C10—C11—H11120.3
C9—C1—C2114.20 (11)C11—C12—C13120.41 (15)
N1—C1—H1107.9C11—C12—H12119.8
C9—C1—H1107.9C13—C12—H12119.8
C2—C1—H1107.9C12—C13—C14120.17 (15)
C8—C2—C15110.51 (13)C12—C13—H13119.9
C8—C2—C3106.63 (12)C14—C13—H13119.9
C15—C2—C3109.61 (13)O2—C14—C13123.04 (13)
C8—C2—C1105.02 (11)O2—C14—C9116.28 (12)
C15—C2—C1110.47 (12)C13—C14—C9120.67 (14)
C3—C2—C1114.42 (12)C2—C15—H15A109.5
C4—C3—C2116.20 (12)C2—C15—H15B109.5
C4—C3—H3A108.2H15A—C15—H15B109.5
C2—C3—H3A108.2C2—C15—H15C109.5
C4—C3—H3B108.2H15A—C15—H15C109.5
C2—C3—H3B108.2H15B—C15—H15C109.5
H3A—C3—H3B107.4C21—C16—C17117.99 (13)
C3—C4—C5112.60 (14)C21—C16—C7122.65 (12)
C3—C4—H4A109.1C17—C16—C7119.37 (13)
C5—C4—H4A109.1O3—C17—C18123.70 (13)
C3—C4—H4B109.1O3—C17—C16115.52 (12)
C5—C4—H4B109.1C18—C17—C16120.78 (14)
H4A—C4—H4B107.8C19—C18—C17119.62 (14)
C4—C5—C6114.05 (12)C19—C18—H18120.2
C4—C5—H5A108.7C17—C18—H18120.2
C6—C5—H5A108.7C20—C19—C18120.67 (14)
C4—C5—H5B108.7C20—C19—H19119.7
C6—C5—H5B108.7C18—C19—H19119.7
H5A—C5—H5B107.6C19—C20—C21119.53 (16)
C8—C6—C5109.21 (12)C19—C20—H20120.2
C8—C6—C7106.72 (11)C21—C20—H20120.2
C5—C6—C7115.07 (12)C16—C21—C20121.40 (14)
C8—C6—H6108.6C16—C21—H21119.3
C5—C6—H6108.6C20—C21—H21119.3
C7—C6—H6108.6O2—C22—H22A109.5
N1—C7—C16110.89 (11)O2—C22—H22B109.5
N1—C7—C6109.03 (11)H22A—C22—H22B109.5
C16—C7—C6111.68 (11)O2—C22—H22C109.5
N1—C7—H7108.4H22A—C22—H22C109.5
C16—C7—H7108.4H22B—C22—H22C109.5
C6—C7—H7108.4O3—C23—H23A109.5
O1—C8—C6123.22 (14)O3—C23—H23B109.5
O1—C8—C2123.74 (14)H23A—C23—H23B109.5
C6—C8—C2113.02 (12)O3—C23—H23C109.5
C10—C9—C14117.47 (13)H23A—C23—H23C109.5
C10—C9—C1120.91 (12)H23B—C23—H23C109.5
C14—C9—C1121.54 (13)C7—N1—C1113.43 (11)
C11—C10—C9121.82 (14)C7—N1—H1A108.5 (10)
C11—C10—H10119.1C1—N1—H1A106.7 (10)
C9—C10—H10119.1C14—O2—C22118.30 (12)
C12—C11—C10119.47 (15)C17—O3—C23117.79 (13)
N1—C1—C2—C856.53 (14)C9—C10—C11—C120.4 (3)
C9—C1—C2—C8179.06 (12)C10—C11—C12—C130.0 (3)
N1—C1—C2—C15175.70 (12)C11—C12—C13—C140.4 (3)
C9—C1—C2—C1561.77 (16)C12—C13—C14—O2177.88 (14)
N1—C1—C2—C360.04 (15)C12—C13—C14—C90.5 (2)
C9—C1—C2—C362.49 (16)C10—C9—C14—O2178.29 (13)
C8—C2—C3—C451.75 (17)C1—C9—C14—O21.4 (2)
C15—C2—C3—C4171.39 (14)C10—C9—C14—C130.2 (2)
C1—C2—C3—C463.89 (17)C1—C9—C14—C13177.06 (13)
C2—C3—C4—C544.90 (19)N1—C7—C16—C2120.15 (19)
C3—C4—C5—C643.79 (19)C6—C7—C16—C21101.66 (15)
C4—C5—C6—C851.92 (17)N1—C7—C16—C17160.12 (12)
C4—C5—C6—C768.05 (17)C6—C7—C16—C1778.06 (16)
C8—C6—C7—N158.41 (14)C21—C16—C17—O3179.13 (12)
C5—C6—C7—N162.92 (15)C7—C16—C17—O31.14 (19)
C8—C6—C7—C16178.70 (11)C21—C16—C17—C180.8 (2)
C5—C6—C7—C1659.97 (16)C7—C16—C17—C18178.93 (13)
C5—C6—C8—O1119.23 (16)O3—C17—C18—C19179.09 (14)
C7—C6—C8—O1115.79 (16)C16—C17—C18—C190.8 (2)
C5—C6—C8—C262.18 (15)C17—C18—C19—C200.1 (2)
C7—C6—C8—C262.80 (15)C18—C19—C20—C210.7 (3)
C15—C2—C8—O11.6 (2)C17—C16—C21—C200.0 (2)
C3—C2—C8—O1120.63 (16)C7—C16—C21—C20179.71 (14)
C1—C2—C8—O1117.57 (16)C19—C20—C21—C160.7 (3)
C15—C2—C8—C6179.84 (13)C16—C7—N1—C1176.79 (11)
C3—C2—C8—C660.79 (15)C6—C7—N1—C159.86 (15)
C1—C2—C8—C661.01 (15)C9—C1—N1—C7174.42 (11)
N1—C1—C9—C1034.09 (17)C2—C1—N1—C759.77 (15)
C2—C1—C9—C1089.44 (16)C13—C14—O2—C229.9 (2)
N1—C1—C9—C14142.65 (13)C9—C14—O2—C22171.66 (14)
C2—C1—C9—C1493.82 (16)C18—C17—O3—C239.8 (2)
C14—C9—C10—C110.2 (2)C16—C17—O3—C23170.10 (16)
C1—C9—C10—C11176.64 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg1i0.862 (15)2.852 (3)3.6276 (14)150.6 (12)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H27NO3
Mr365.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.9569 (3), 20.8291 (9), 11.6708 (6)
β (°) 96.297 (2)
V3)1922.59 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.288, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14049, 4608, 3166
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.02
No. of reflections4608
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg1i0.862 (15)2.852 (3)3.6276 (14)150.6 (12)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This research was supported by the Industrial Technology Devlopment Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2009). Acta Cryst. E65, o1596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009). Acta Cryst. E65, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds