organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Pyrid­yl)pyrrolidine-2,5-dione

aDepartment of Biology and Chemistry, Bao Shan College, BaoShan, Yun nan 678000, People's Republic of China.
*Correspondence e-mail: hhb826@163.com

(Received 22 September 2009; accepted 4 November 2009; online 11 November 2009)

In the title mol­ecule, C9H8N2O2, the dihedral angle between the pyridine and the pyrrolidine rings is 64.58 (12)°. In the crystal structure, weak C—H⋯π-electron ring inter­actions stabilize the packing.

Related literature

For general background to the pharmaceutical properties of pyrrolidine-2,5-dione derivatives, see: Procopiou et al. (1993[Procopiou, P. A., Draper, C. D., Hutson, J. L., Inglis, G. A., Ross, B. C. & Watson, N. S. (1993). J. Med. Chem. 36, 3658-3662.]); Obniska et al. (2009[Obniska, J., Kaminski, K., Skrzynska, D. & Pichor, J. (2009). Eur. J. Med. Chem. 44, 2224-2233.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O2

  • Mr = 176.17

  • Orthorhombic, P n a 21

  • a = 12.137 (8) Å

  • b = 10.838 (6) Å

  • c = 6.831 (4) Å

  • V = 898.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.984

  • 3927 measured reflections

  • 852 independent reflections

  • 672 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.069

  • S = 1.00

  • 852 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.97 2.78 3.742 (6) 172
Symmetry code: (i) [-x+1, -y+2, z+{\script{1\over 2}}]. Cg is the centroid of the N1,C1–C5 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The derivatives of pyrrolidine-2,5-dione possess valuable pharmaceutical properties (Obniska et al., 2009), among others are inhibitors of the cholesterol biosynthesis (Procopiou et al., 1993). These interesting properties lead us to develop pyrrolidine derivatives containing the pyrrolidine-2,5-dione and the pyridine groups. In this paper, the synthesis of one of these compounds and its crystal structure are reported.

In the title molecule (Fig. 1), the dihedral angle between the pyridine and the pyrrolidine rings equals to 64.58 (12)°, There are C—H···π-electron ring interactions between the hydrogen atom H8B stemming from the pyrrolidine ring and the pyridine ring that serves as an acceptor (Tab. 1).

Related literature top

For general background to the pharmaceutical properties of pyrrolidine-2,5-dione derivatives, see: Procopiou et al. (1993); Obniska et al. (2009). Cg is the centroid of the N1,C1–C5 ring .

Experimental top

Solution of pyrrolidine-2,5-dione (0.04 mol) in ethanol (96%, 15 ml) was added to a stirred ethanol solution (96%, 25 ml) of 3-chloropyridine (0.04 mol) at room temperature, then KOH (0.01 mol) and tetrabutylammonium bromide (0.005 mol) was added to the resulting solution. This mixture was heated at 323 K for 4 h and then cooled to room temperature. After 30 ml of water had been added to this mixture, a white precipitate appeared. The mixture was filtered, the residue was dried under a reduced pressure in a vacuum drying box for 3 hours, then the residue was dissolved in 100 ml of ethanol (96%), and set aside for five days to obtain colourless block crystals suitable for X-ray analysis. Yield: 43%.

Refinement top

All the H atoms were discernible in the difference electron density maps. However, the hydrogens were constrained by the riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl=1.5Ueq(Cmethyl); UisoHaryl=1.2Ueq(Caryl). In the absence of significant anomalous scattering effects 626 Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
1-(3-Pyridyl)pyrrolidine-2,5-dione top
Crystal data top
C9H8N2O2F(000) = 368
Mr = 176.17Dx = 1.302 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 852 reflections
a = 12.137 (8) Åθ = 2.5–25.0°
b = 10.838 (6) ŵ = 0.10 mm1
c = 6.831 (4) ÅT = 293 K
V = 898.6 (9) Å3Block, colourless
Z = 40.25 × 0.21 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
852 independent reflections
Radiation source: fine-focus sealed tube672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1314
Tmin = 0.977, Tmax = 0.984k = 1212
3927 measured reflectionsl = 87
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
852 reflectionsΔρmax = 0.11 e Å3
119 parametersΔρmin = 0.10 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
32 constraintsExtinction coefficient: 0.128 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H8N2O2V = 898.6 (9) Å3
Mr = 176.17Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.137 (8) ŵ = 0.10 mm1
b = 10.838 (6) ÅT = 293 K
c = 6.831 (4) Å0.25 × 0.21 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
852 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
672 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.073
3927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.069H-atom parameters constrained
S = 1.00Δρmax = 0.11 e Å3
852 reflectionsΔρmin = 0.10 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46710 (19)0.76727 (18)0.7705 (4)0.0421 (6)
C20.5641 (2)0.7232 (2)0.8551 (4)0.0576 (8)
H20.58470.75450.97640.069*
C30.5975 (2)0.5948 (2)0.5932 (5)0.0653 (9)
H30.64080.53520.53270.078*
C40.5034 (2)0.6353 (2)0.4968 (4)0.0661 (8)
H40.48530.60400.37420.079*
C50.4364 (2)0.7235 (2)0.5857 (5)0.0563 (8)
H50.37310.75230.52400.068*
C60.34810 (18)0.8409 (2)1.0491 (4)0.0508 (7)
C70.29704 (19)0.9616 (2)1.1138 (4)0.0578 (8)
H7A0.32990.98971.23530.069*
H7B0.21830.95241.13280.069*
C80.3213 (2)1.0532 (2)0.9462 (5)0.0565 (8)
H8A0.25341.08230.88740.068*
H8B0.36251.12370.99430.068*
C90.38857 (18)0.9809 (2)0.8001 (5)0.0505 (7)
N10.62967 (18)0.63755 (19)0.7709 (4)0.0668 (7)
N20.40243 (14)0.86060 (15)0.8703 (3)0.0417 (5)
O10.34353 (16)0.74092 (18)1.1328 (4)0.0784 (7)
O20.42619 (16)1.01652 (17)0.6419 (4)0.0797 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (13)0.0403 (13)0.0449 (17)0.0047 (10)0.0005 (13)0.0029 (13)
C20.0566 (15)0.0605 (16)0.056 (2)0.0107 (12)0.0101 (15)0.0018 (14)
C30.0721 (19)0.0532 (16)0.071 (2)0.0082 (12)0.0108 (19)0.0073 (16)
C40.0749 (18)0.0639 (17)0.060 (2)0.0014 (15)0.0085 (17)0.0176 (14)
C50.0496 (15)0.0607 (17)0.059 (2)0.0035 (12)0.0103 (14)0.0036 (15)
C60.0493 (14)0.0581 (16)0.0450 (19)0.0032 (13)0.0024 (13)0.0052 (15)
C70.0484 (13)0.0743 (17)0.051 (2)0.0007 (13)0.0042 (16)0.0066 (15)
C80.0445 (14)0.0513 (15)0.074 (2)0.0018 (12)0.0013 (14)0.0083 (16)
C90.0395 (12)0.0501 (15)0.062 (2)0.0033 (10)0.0001 (14)0.0065 (15)
N10.0668 (15)0.0652 (15)0.0684 (19)0.0207 (11)0.0052 (15)0.0076 (15)
N20.0380 (10)0.0427 (12)0.0445 (14)0.0003 (8)0.0008 (10)0.0044 (10)
O10.0992 (15)0.0735 (13)0.0624 (15)0.0008 (11)0.0115 (14)0.0195 (11)
O20.0846 (13)0.0681 (13)0.0864 (17)0.0147 (10)0.0343 (13)0.0302 (13)
Geometric parameters (Å, º) top
C1—C21.396 (4)C6—O11.226 (3)
C1—C51.399 (4)C6—N21.404 (3)
C1—N21.450 (3)C6—C71.514 (4)
C2—N11.351 (3)C7—C81.544 (4)
C2—H20.9300C7—H7A0.9700
C3—N11.356 (4)C7—H7B0.9700
C3—C41.390 (4)C8—C91.509 (4)
C3—H30.9300C8—H8A0.9700
C4—C51.393 (4)C8—H8B0.9700
C4—H40.9300C9—O21.235 (4)
C5—H50.9300C9—N21.400 (3)
C2—C1—C5118.8 (2)C6—C7—H7A110.7
C2—C1—N2120.0 (3)C8—C7—H7A110.7
C5—C1—N2121.1 (2)C6—C7—H7B110.7
N1—C2—C1123.8 (3)C8—C7—H7B110.7
N1—C2—H2118.1H7A—C7—H7B108.8
C1—C2—H2118.1C9—C8—C7105.1 (2)
N1—C3—C4123.6 (3)C9—C8—H8A110.7
N1—C3—H3118.2C7—C8—H8A110.7
C4—C3—H3118.2C9—C8—H8B110.7
C3—C4—C5119.3 (3)C7—C8—H8B110.7
C3—C4—H4120.4H8A—C8—H8B108.8
C5—C4—H4120.4O2—C9—N2123.1 (2)
C4—C5—C1118.1 (3)O2—C9—C8128.1 (2)
C4—C5—H5121.0N2—C9—C8108.8 (3)
C1—C5—H5121.0C2—N1—C3116.5 (2)
O1—C6—N2124.2 (2)C9—N2—C6112.6 (2)
O1—C6—C7127.5 (3)C9—N2—C1123.6 (2)
N2—C6—C7108.3 (2)C6—N2—C1123.8 (2)
C6—C7—C8105.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.783.742 (6)172
Symmetry code: (i) x+1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2O2
Mr176.17
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)12.137 (8), 10.838 (6), 6.831 (4)
V3)898.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3927, 852, 672
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.00
No. of reflections852
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.97002.77863.742 (6)172
Symmetry code: (i) x+1, y+2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Bao Shan College (No. 09B004K) for financial support.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationObniska, J., Kaminski, K., Skrzynska, D. & Pichor, J. (2009). Eur. J. Med. Chem. 44, 2224–2233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProcopiou, P. A., Draper, C. D., Hutson, J. L., Inglis, G. A., Ross, B. C. & Watson, N. S. (1993). J. Med. Chem. 36, 3658–3662.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds