inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Copper(II) hydrogenphosphate, CuHPO4

aOtto-Schott-Institut, Friedrich-Schiller-Universität Jena, Frauenhoferstrasse 6, 07745 Jena, Germany, and bInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, D-07743 Jena, Germany
*Correspondence e-mail: doerte.stachel@uni-jena.de

(Received 2 September 2009; accepted 30 October 2009; online 7 November 2009)

The title compound, CuHPO4, has been synthesized from a mixture of phospho­ric acid and copper oxide. It has the same composition as MHPO4 (M = Ca, Ba, Pb, Sr or Sn), but adopts a rhombohedral structure with all atoms on general positions. The structure features distorted PO4 tetra­hedra linked by copper, forming 12-membered rings. The CuII atom is coordinated by five O atoms in a distorted square-pyramidal manner. O—H⋯O hydrogen bonding leads to an additional stabilization of the structure.

Related literature

For the structure of CaHPO4, see: Smith et al. (1955[Smith, J. P., Lehr, J. R. & Brown, W. E. (1955). Am. Mineral. 40, 893-899.]); MacLennan & Beevers (1955[MacLennan, G. & Beevers, C. A. (1955). Acta Cryst. 8, 579-583.]). For a report about BaHPO4 and PbHPO4, see: Bengtsson (1941[Bengtsson, E. (1941). Struct. Rep. 8, 189-199.]). For the structure of SnHPO4, see: Berndt & Lamberg (1971[Berndt, A. F. & Lamberg, R. (1971). Acta Cryst. B27, 1092-1094.]). For information about SrHPO4, see: Boudjada et al. (1978[Boudjada, A., Masse, R. & Guitel, J. C. (1978). Acta Cryst. B34, 2692-2695.]). For a report about CuHPO4·H2O, see: Boudjada (1980[Boudjada, A. (1980). Mater. Res. Bull. 15, 1083-1090.]). For information about CuHPO4·0.5 H2O see: Sierra et al. (2003[Sierra, G. A., Isaza, A. E., Palacio, L. A. & Saldarriaga, C. (2003). Powder Diffr. 18, 36-37.]). For the structure of α-Cu2P2O7, see: Lukaszewicz (1966[Lukaszewicz, K. (1966). Bull. Acad. Polon. Sci. Ser. Sci. Chim. 14, 725-729.]). For information about β-Cu2P2O7, see: Robertson & Calvo (1968[Robertson, B. E. & Calvo, C. (1968). Canad. J. Chem., 46, 605-612.]). For a report about Cu2P4O12, see: Laügt et al. (1972[Laügt, M., Guitel, J. C., Tordjman, I. & Bassi, G. (1972). Acta Cryst. B28, 201-208.]).

Experimental

Crystal data
  • CuHPO4

  • Mr = 159.52

  • Rhombohedral, [R \overline 3]

  • a = 9.5145 (4) Å

  • α = 114.678 (2)°

  • V = 495.88 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 6.92 mm−1

  • T = 183 K

  • 0.05 × 0.03 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3338 measured reflections

  • 755 independent reflections

  • 654 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.02

  • 755 reflections

  • 60 parameters

  • All H-atom parameters refined

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.925 (2)
Cu1—O4i 1.932 (2)
Cu1—O3ii 1.971 (2)
Cu1—O3iii 1.992 (2)
Cu1—O4iv 2.360 (2)
P1—O4 1.515 (2)
P1—O1 1.530 (2)
P1—O3 1.541 (2)
P1—O2 1.571 (2)
Symmetry codes: (i) z, x-1, y-1; (ii) -z+2, -x+2, -y+1; (iii) -x+2, -y+1, -z+1; (iv) y, z, x-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1ii 0.87 (5) 1.93 (5) 2.800 (3) 176 (5)
Symmetry code: (ii) -z+2, -x+2, -y+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydrogen phosphate of copper(II) adopts the formula MHPO4 like other divalent cations. However, the monetites CaHPO4 (triclinic, P1; Smith et al., 1955), BaHPO4 (orthorhombic, Pccn; Bengtsson, 1941) and PbHPO4 (monoclinic, P2/c or Pc; Bengtsson, 1941) or SrHPO4 (triclinic, P1; Boudjada et al., 1978) and SnHPO4 (monoclinic, P21/c; Berndt & Lamberg, 1971) have very different structures, which could be due to the much bigger ionic radii of the metals in comparison to copper. CuHPO4 has a rhombohedral (R3) structure. The coordination of Cu can be described as a square pyramid, with the apical C–O bond being significantly longer than the other four bonds. The coordination in the base plane could even be described as a strongly squeezed, almost planar tetrahedron (Fig 1). The Cu ions are linked by distorted PO4 tetrahedra yielding twelve-membered rings (see Fig. 4, and Fig. 5). The distortion of the phosphate tetrahedra is caused by the OH-groups, which point towards the centre of the rings. There is only one hydrogen bond present in the asymmetric unit (see hydrogen bond geometry). But in the whole crystal structure, this leads to two intramolecular and three intermolecular hydrogen bonds (see Fig. 2 and Fig. 3). In other copper phosphates, the copper atoms are coordinated by four, five and/or six oxygen atoms, respectively (Boudjada, 1980; Sierra et al., 2003; Lukaszewicz, 1966; Robertson & Calvo, 1968; Laügt et al., 1972). CuHPO4 formed only trigonal bipyramids of CuO5.

Related literature top

For the structure of CaHPO4, see: Smith et al. (1955); MacLennan & Beevers (1955). For a report about BaHPO4 and PbHPO4, see: Bengtsson (1941). For the structure of SnHPO4, see: Berndt & Lamberg (1971). For information about SrHPO4, see: Boudjada et al. (1978). For a report about CuHPO4*H2O, see: Boudjada (1980). For information about CuHPO4.0.5 H2O see: Sierra et al. (2003). For the structure of α-Cu2P2O7, see: Lukaszewicz (1966). For information about β-Cu2P2O7, see: Robertson & Calvo (1968). For a report about Cu2P4O12, see: Laügt et al. (1972).

Experimental top

Phosphoric acid (65%) and copper oxide were mixed in a mortar for several hours. Afterwards the mixture was tempered at 373 K for a week. CuHPO4 was obtained in the form of emerald-green needles, which decompose by further tempering.

Refinement top

The hydrogen atom of the hydroxyd-group was located by difference Fourier synthesis and refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1, showing 50% probability displacement ellipsoides and the numbering scheme for the complete coordination polyhedron about Cu1 (Symmetry codes: (A) z,x-1,y-1; (B) -z+2,-x+2,-y+1; (C) -x+2,-y+1,-z+1 and (D) y,z,x-1.)
[Figure 2] Fig. 2. The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)
[Figure 3] Fig. 3. The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)
[Figure 4] Fig. 4. View of the unit cell of CuHPO~4~ along the z axis.
[Figure 5] Fig. 5. Projection of the CuHPO4 structure along the z axis, with applied polyhedrale.
Copper(II) hydrogenphosphate top
Crystal data top
CuHPO4Dx = 3.205 Mg m3
Mr = 159.52Mo Kα radiation, λ = 0.71073 Å
Rhombohedral, R3Cell parameters from 3338 reflections
Hall symbol: -P 3*θ = 3.4–27.5°
a = 9.5145 (4) ŵ = 6.92 mm1
α = 114.678 (2)°T = 183 K
V = 495.88 (6) Å3Needles, green
Z = 60.05 × 0.03 × 0.03 mm
F(000) = 462
Data collection top
Bruker–Nonius KappaCCD
diffractometer
654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1112
3338 measured reflectionsk = 1212
755 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
755 reflectionsΔρmax = 0.62 e Å3
60 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
CuHPO4Z = 6
Mr = 159.52Mo Kα radiation
Rhombohedral, R3µ = 6.92 mm1
a = 9.5145 (4) ÅT = 183 K
α = 114.678 (2)°0.05 × 0.03 × 0.03 mm
V = 495.88 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
654 reflections with I > 2σ(I)
3338 measured reflectionsRint = 0.045
755 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066All H-atom parameters refined
S = 1.02Δρmax = 0.62 e Å3
755 reflectionsΔρmin = 0.66 e Å3
60 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91592 (6)0.43161 (6)0.19005 (6)0.00678 (18)
P11.31526 (12)0.74973 (12)0.68353 (13)0.0059 (2)
O11.1314 (4)0.5149 (4)0.4494 (3)0.0083 (5)
O21.5471 (4)0.8561 (4)0.7726 (4)0.0106 (5)
O31.3326 (3)0.7437 (3)0.8490 (3)0.0077 (5)
O41.2753 (4)0.8882 (3)0.6838 (3)0.0087 (5)
H21.555 (8)0.866 (8)0.689 (8)0.040 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0063 (2)0.0080 (3)0.0069 (2)0.0048 (2)0.0048 (2)0.0059 (2)
P10.0063 (4)0.0066 (4)0.0068 (4)0.0049 (3)0.0050 (3)0.0054 (3)
O10.0084 (11)0.0069 (11)0.0079 (11)0.0053 (10)0.0055 (10)0.0050 (10)
O20.0096 (11)0.0151 (12)0.0120 (11)0.0095 (10)0.0086 (10)0.0106 (10)
O30.0079 (10)0.0090 (11)0.0074 (10)0.0056 (9)0.0060 (9)0.0063 (9)
O40.0109 (11)0.0085 (10)0.0070 (10)0.0076 (9)0.0059 (9)0.0058 (9)
Geometric parameters (Å, º) top
Cu1—O11.925 (2)P1—O31.541 (2)
Cu1—O4i1.932 (2)P1—O21.571 (2)
Cu1—O3ii1.971 (2)O2—H20.87 (5)
Cu1—O3iii1.992 (2)O3—Cu1v1.971 (2)
Cu1—O4iv2.360 (2)O3—Cu1iii1.992 (2)
P1—O41.515 (2)O4—Cu1vi1.932 (2)
P1—O11.530 (2)O4—Cu1vii2.360 (2)
O1—Cu1—O4i163.91 (9)O1—P1—O3110.78 (12)
O1—Cu1—O3ii91.59 (9)O4—P1—O2111.98 (13)
O4i—Cu1—O3ii94.28 (9)O1—P1—O2109.68 (13)
O1—Cu1—O3iii94.20 (9)O3—P1—O2102.64 (12)
O4i—Cu1—O3iii84.72 (9)P1—O1—Cu1123.24 (13)
O3ii—Cu1—O3iii162.12 (8)P1—O2—H2110 (3)
O1—Cu1—O4iv112.90 (9)P1—O3—Cu1v128.15 (13)
O4i—Cu1—O4iv83.13 (4)P1—O3—Cu1iii126.96 (13)
O3ii—Cu1—O4iv74.64 (8)Cu1v—O3—Cu1iii101.63 (10)
O3iii—Cu1—O4iv87.53 (8)P1—O4—Cu1vi132.92 (13)
O4—P1—O1110.21 (12)P1—O4—Cu1vii125.51 (12)
O4—P1—O3111.35 (12)Cu1vi—O4—Cu1vii90.84 (8)
Symmetry codes: (i) z, x1, y1; (ii) z+2, x+2, y+1; (iii) x+2, y+1, z+1; (iv) y, z, x1; (v) y+2, z+1, x+2; (vi) y+1, z+1, x; (vii) z+1, x, y.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.87 (5)1.93 (5)2.800 (3)176 (5)
Symmetry code: (ii) z+2, x+2, y+1.

Experimental details

Crystal data
Chemical formulaCuHPO4
Mr159.52
Crystal system, space groupRhombohedral, R3
Temperature (K)183
a, c (Å)9.5145 (4), 9.5145 (4)
α (°)114.678 (2)
V3)495.88 (6)
Z6
Radiation typeMo Kα
µ (mm1)6.92
Crystal size (mm)0.05 × 0.03 × 0.03
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3338, 755, 654
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.02
No. of reflections755
No. of parameters60
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.62, 0.66

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Cu1—O11.925 (2)P1—O41.515 (2)
Cu1—O4i1.932 (2)P1—O11.530 (2)
Cu1—O3ii1.971 (2)P1—O31.541 (2)
Cu1—O3iii1.992 (2)P1—O21.571 (2)
Cu1—O4iv2.360 (2)
Symmetry codes: (i) z, x1, y1; (ii) z+2, x+2, y+1; (iii) x+2, y+1, z+1; (iv) y, z, x1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.87 (5)1.93 (5)2.800 (3)176 (5)
Symmetry code: (ii) z+2, x+2, y+1.
 

References

First citationBengtsson, E. (1941). Struct. Rep. 8, 189–199.  Google Scholar
First citationBerndt, A. F. & Lamberg, R. (1971). Acta Cryst. B27, 1092–1094.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBoudjada, A. (1980). Mater. Res. Bull. 15, 1083–1090.  CrossRef CAS Web of Science Google Scholar
First citationBoudjada, A., Masse, R. & Guitel, J. C. (1978). Acta Cryst. B34, 2692–2695.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLaügt, M., Guitel, J. C., Tordjman, I. & Bassi, G. (1972). Acta Cryst. B28, 201–208.  CrossRef IUCr Journals Web of Science Google Scholar
First citationLukaszewicz, K. (1966). Bull. Acad. Polon. Sci. Ser. Sci. Chim. 14, 725–729.  CAS Google Scholar
First citationMacLennan, G. & Beevers, C. A. (1955). Acta Cryst. 8, 579–583.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRobertson, B. E. & Calvo, C. (1968). Canad. J. Chem., 46, 605–612.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSierra, G. A., Isaza, A. E., Palacio, L. A. & Saldarriaga, C. (2003). Powder Diffr. 18, 36–37.  Web of Science CrossRef CAS Google Scholar
First citationSmith, J. P., Lehr, J. R. & Brown, W. E. (1955). Am. Mineral. 40, 893–899.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds