metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1575-m1576

[N,N-Bis(di­phenyl­phosphino)propyl­amine-κ2P,P]bromidotri­carbonyl­rhenium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9330, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za

(Received 21 September 2009; accepted 9 November 2009; online 14 November 2009)

In the title compound, [ReBr(C27H27NP2)(CO)3], the ReI atom is octa­hedrally surrounded by three carbonyl ligands in a facial arrangement, a bromide ligand and the P,P′-bidentate ligand Bis(diphenyl­phosphino)propyl­amine. The compound exhibits substitutional disorder of the bromide ligand and the axial carbonyl ligand, with almost 50% occupancy for both Br amd CO [0.538 (4) and 0.462 (4), respectively]. In addition, the propyl chain on the N atom of the bidentate ligand exhibits a 0.648 (9):0.352 (9) disorder. C—H⋯O and C—H⋯Br hydrogen bonding consolidates the crystal packing.

Related literature

For the synthesis of the ReI-tricarbonyl synthon: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). For the synthesis and structures of related complexes: Graziani & Casellato (1996[Graziani, R. & Casellato, U. (1996). Acta Cryst. C52, 850-852.]); Kemp (2006[Kemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.]); Mundwiler et al. (2004[Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]); Rossi et al. (1993[Rossi, R., Marchi, A., Marvelli, L., Magon, L., Peruzzini, M., Casellato, U. & Graziani, R. (1993). J. Chem. Soc. Dalton Trans. pp. 723-729.]); Schutte & Visser (2008[Schutte, M. & Visser, H. G. (2008). Acta Cryst. E64, m1226-m1227.]); Schutte & et al. (2007[Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195-m3196.], 2008[Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610-m1611.]); Steil et al. (1989[Steil, P., Nagel, U. & Beck, W. (1989). J. Organomet. Chem. 366, 313-331.]).

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C27H27NP2)(CO)3]

  • Mr = 777.58

  • Monoclinic, P 21 /n

  • a = 11.0120 (2) Å

  • b = 17.1620 (3) Å

  • c = 15.2090 (2) Å

  • β = 96.735 (2)°

  • V = 2854.48 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.80 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur 3 CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.595, Tmax = 0.760

  • 22483 measured reflections

  • 6863 independent reflections

  • 5197 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.03

  • 6863 reflections

  • 387 parameters

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Selected geometric parameters (Å, °)

Re1—C3B 1.866 (15)
Re1—C2 1.952 (5)
Re1—C1 1.962 (6)
Re1—C3A 1.968 (18)
Re1—P2 2.4375 (14)
Re1—P1 2.4583 (15)
Re1—Br2 2.617 (3)
Re1—Br1 2.619 (2)
P2—Re1—P1 66.65 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3B 0.95 2.51 3.39 (2) 155
C14—H14⋯Br1i 0.95 2.81 3.524 (6) 133
C46—H46⋯Br1 0.95 2.63 3.519 (6) 157
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2004[Brandenberg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Re—CO bond distances of 1.866 (15) Å to 1.968 (18) Å are well within the normal range (Mundwiler et al., 2004, Kemp (2006), Schutte et al. (2008).) The rhenium(I) bromido bond distance of 2.617 (2) Å compare well with related structures (Schutte et al. (2007), Graziani et al. (1996)). The P1—Re—P2 bite angle of 66.65 (4) ° is almost identical to similar structures (Rossi et al. (1993), Steil et al. (1989) and Graziani et al. (1996)). The octahedral arrangement around the rhenium atom is slightly distorted, possibly due to the small bite angle of the bidentate ligand. Three types of intramolecular and intermolecular hydrogen bonds are observed and listed in Table 2. The compound exhibits substitutional disorder of the bromido ligand and the axial carbonyl ligand, with 53.8% occupancy for both Br amd CO. Also, the propyl chain on the nitrogen atom of the bidentate ligand exhibits a 64.8/35.2% disorder.

Related literature top

For the synthesis of the ReI-tricarbonyl synthon: Alberto et al. (1996). For the synthesis and structures of related complexes: Graziani & Casellato (1996); Kemp (2006); Mundwiler et al. (2004); Rossi et al. (1993); Schutte et al. (2007, 2008a,b); Steil et al. (1989).

Experimental top

[NEt4]2[Re(CO)3Br3] (100 mg, 0.130 mmol), as prepared by Alberto et al. (1996), was dissolved in 10 ml of methanol. From here, the reaction was done under a nitrogen atmosphere. The reaction mixture was heated to 37°C. Bis(diphenylphosphino)-propylamine (66.58 mg, 0.156 mmol) was added to the reaction mixture, heated to 50°C and stirred for 1 h. It was left to cool down and the precipitate was filtered off and dried under vacuum. A 84.71% yield (85.5 mg, 0.1099 mmol) was obtained. Crystals, suitable for X-ray diffraction data collection were obtained by recrystalizing from methanol.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C). The aliphatic H atoms were place in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C) for methylene carbon atoms and Uiso(H) = 1.5Ueq(C) for methyl atoms. The same procedures were used for the H atom treatment of the disordered part of the molecule by using. The PART instruction was used to create both the disordered parts of the propyl group and the occupancies were determined with a interconnected free variable instruction. The highest and lowest electron density peak and hole lies within 0.89 and 0.79 Å from Re1 respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). One of the disordered propyl groups are omitted for clarity. Hydrogen atoms omitted for the same reason.
[N,N-Bis(diphenylphosphino)propylamine- κ2P,P]bromidotricarbonylrhenium(I) top
Crystal data top
[ReBr(C27H27NP2)(CO)3]F(000) = 1512
Mr = 777.58Dx = 1.809 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 10593 reflections
a = 11.0120 (2) Åθ = 2.2–33.2°
b = 17.1620 (3) ŵ = 5.80 mm1
c = 15.2090 (2) ÅT = 100 K
β = 96.735 (2)°Cuboid, colourless
V = 2854.48 (7) Å30.1 × 0.08 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 3 CCD area-detector
diffractometer
6863 independent reflections
Radiation source: Enhance (Mo) X-ray Source5197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.1829 pixels mm-1θmax = 28°, θmin = 2.2°
ω scansh = 1114
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2221
Tmin = 0.595, Tmax = 0.760l = 2016
22483 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6863 reflectionsΔρmax = 1.95 e Å3
387 parametersΔρmin = 1.11 e Å3
0 restraints
Crystal data top
[ReBr(C27H27NP2)(CO)3]V = 2854.48 (7) Å3
Mr = 777.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0120 (2) ŵ = 5.80 mm1
b = 17.1620 (3) ÅT = 100 K
c = 15.2090 (2) Å0.1 × 0.08 × 0.05 mm
β = 96.735 (2)°
Data collection top
Oxford Diffraction Xcalibur 3 CCD area-detector
diffractometer
6863 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5197 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.760Rint = 0.046
22483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 1.95 e Å3
6863 reflectionsΔρmin = 1.11 e Å3
387 parameters
Special details top

Experimental. The intensity data was collected on a Oxford Diffraction Xcalibur 3 area detector diffractometer using an exposure time of 30 s/frame (Oxford, 2006a). A total of 552 frames were collected with a frame width of 0.75° covering up to θ = 28.0° with 99.5% completeness accomplized.

CrysAlis RED (Oxford Diffraction Ltd, Version 1.171.31.5 (Oxford, 2006b) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.686711 (18)0.106550 (11)0.202197 (12)0.02066 (7)
P20.73189 (12)0.20128 (8)0.32094 (8)0.0239 (3)
P10.85557 (12)0.19498 (7)0.17874 (8)0.0242 (3)
C20.5544 (5)0.0550 (3)0.2545 (3)0.0285 (12)
O20.4813 (4)0.0257 (2)0.2910 (3)0.0411 (10)
C340.8309 (8)0.0726 (4)0.5839 (4)0.054 (2)
H340.8490.04360.63710.064*
C350.9232 (8)0.0939 (3)0.5363 (5)0.059 (2)
H351.00510.07980.55640.071*
O10.6682 (4)0.0050 (2)0.0405 (2)0.0438 (10)
C10.6767 (5)0.0357 (3)0.1004 (3)0.0295 (12)
C320.6847 (6)0.1351 (3)0.4772 (3)0.0330 (13)
H320.60240.14880.45760.04*
C440.4952 (6)0.4065 (3)0.3942 (4)0.0443 (17)
H440.44540.44830.40980.053*
C460.5319 (6)0.3030 (3)0.2950 (4)0.0370 (14)
H460.50820.27430.24240.044*
C310.7784 (5)0.1570 (3)0.4284 (3)0.0271 (11)
C111.0162 (5)0.1714 (3)0.1741 (3)0.0243 (11)
C260.7771 (5)0.3402 (3)0.1033 (4)0.0368 (14)
H260.75630.35470.15990.044*
C220.8530 (5)0.2457 (3)0.0066 (4)0.0332 (13)
H220.88690.1960.0030.04*
C210.8280 (5)0.2662 (3)0.0915 (3)0.0273 (12)
C131.1832 (5)0.0804 (4)0.1978 (4)0.0382 (14)
H131.21260.02950.21290.046*
C161.0980 (5)0.2284 (3)0.1530 (3)0.0257 (11)
H161.06890.27920.13730.031*
C410.6376 (5)0.2829 (3)0.3499 (3)0.0281 (12)
C360.8976 (6)0.1362 (3)0.4586 (4)0.0413 (15)
H360.96230.1510.42580.05*
C151.2208 (5)0.2120 (3)0.1548 (3)0.0313 (12)
H151.27590.25140.14070.038*
C141.2640 (5)0.1374 (4)0.1772 (4)0.0396 (14)
H141.34850.12580.17840.048*
N10.8534 (5)0.2416 (3)0.2781 (3)0.0355 (12)
C450.4617 (6)0.3653 (4)0.3180 (4)0.0447 (16)
H450.38990.37950.28070.054*
C240.7837 (6)0.3709 (4)0.0495 (4)0.0439 (15)
H240.7710.4070.0970.053*
C121.0608 (5)0.0966 (3)0.1967 (3)0.0287 (12)
H121.00620.05710.21130.034*
C250.7571 (6)0.3919 (3)0.0334 (4)0.0454 (16)
H250.72480.44210.04270.054*
C230.8290 (5)0.2972 (4)0.0641 (4)0.0407 (14)
H230.84360.2820.1220.049*
C420.6723 (5)0.3252 (3)0.4263 (4)0.0322 (13)
H420.74480.31150.46320.039*
C430.6020 (6)0.3875 (3)0.4492 (4)0.0408 (15)
H430.6260.41680.50130.049*
C330.7130 (8)0.0925 (3)0.5559 (4)0.0489 (19)
H330.64960.07760.58970.059*
Br20.8260 (2)0.00301 (16)0.29098 (18)0.0268 (5)0.462 (4)
C3A0.5759 (17)0.1762 (8)0.1278 (10)0.027 (2)0.462 (4)
O3A0.5100 (18)0.2120 (12)0.0826 (14)0.041 (6)0.462 (4)
Br10.5387 (2)0.19542 (14)0.09865 (15)0.0254 (5)0.538 (4)
C3B0.7961 (12)0.0397 (7)0.2678 (8)0.027 (2)0.538 (4)
O3B0.8632 (15)0.0078 (12)0.3052 (13)0.055 (6)0.538 (4)
C4B0.9665 (16)0.2791 (10)0.3419 (10)0.026 (4)0.352 (9)
H4B10.94940.2780.40430.031*0.352 (9)
H4B21.04240.24940.3370.031*0.352 (9)
C5B0.9802 (16)0.3627 (10)0.3113 (11)0.0342 (18)0.352 (9)
H5B10.99090.36370.24760.041*0.352 (9)
H5B20.90610.39310.31980.041*0.352 (9)
C6B1.090 (4)0.3979 (17)0.365 (3)0.035 (7)0.352 (9)
H6B11.10070.45170.34540.052*0.352 (9)
H6B21.16310.36750.3560.052*0.352 (9)
H6B31.07830.39750.42760.052*0.352 (9)
C4A0.9176 (8)0.3160 (5)0.2997 (5)0.025 (2)0.648 (9)
H4A10.86370.35160.32850.03*0.648 (9)
H4A20.93760.3410.24450.03*0.648 (9)
C5A1.0330 (10)0.3019 (5)0.3604 (6)0.0342 (18)0.648 (9)
H5A11.07980.25930.33620.041*0.648 (9)
H5A21.0120.28520.4190.041*0.648 (9)
C6A1.112 (2)0.3747 (10)0.3713 (18)0.046 (4)0.648 (9)
H6A11.18640.36360.41130.069*0.648 (9)
H6A21.06630.41670.39610.069*0.648 (9)
H6A31.13440.39070.31340.069*0.648 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02282 (11)0.01788 (10)0.02159 (10)0.00267 (9)0.00387 (7)0.00426 (8)
P20.0250 (7)0.0247 (7)0.0234 (6)0.0020 (6)0.0084 (5)0.0003 (5)
P10.0275 (7)0.0192 (7)0.0278 (7)0.0005 (5)0.0113 (6)0.0025 (5)
C20.032 (3)0.021 (3)0.033 (3)0.004 (2)0.001 (2)0.009 (2)
O20.032 (2)0.045 (3)0.047 (2)0.004 (2)0.0088 (19)0.017 (2)
C340.100 (6)0.021 (3)0.032 (3)0.007 (4)0.025 (4)0.006 (3)
C350.072 (5)0.025 (4)0.068 (5)0.000 (3)0.043 (4)0.002 (3)
O10.064 (3)0.035 (2)0.030 (2)0.011 (2)0.004 (2)0.0039 (19)
C10.031 (3)0.029 (3)0.029 (3)0.004 (2)0.004 (2)0.009 (2)
C320.051 (4)0.022 (3)0.026 (3)0.009 (3)0.010 (3)0.004 (2)
C440.063 (4)0.028 (3)0.047 (4)0.016 (3)0.031 (3)0.013 (3)
C460.046 (4)0.039 (3)0.029 (3)0.014 (3)0.016 (3)0.009 (2)
C310.037 (3)0.019 (3)0.026 (3)0.005 (2)0.004 (2)0.007 (2)
C110.025 (3)0.026 (3)0.023 (2)0.000 (2)0.006 (2)0.004 (2)
C260.044 (4)0.021 (3)0.049 (4)0.007 (3)0.020 (3)0.002 (2)
C220.035 (3)0.027 (3)0.038 (3)0.007 (2)0.008 (3)0.002 (2)
C210.026 (3)0.020 (3)0.039 (3)0.002 (2)0.014 (2)0.003 (2)
C130.030 (3)0.031 (3)0.053 (4)0.006 (3)0.002 (3)0.011 (3)
C160.033 (3)0.018 (2)0.026 (3)0.001 (2)0.007 (2)0.001 (2)
C410.038 (3)0.021 (3)0.028 (3)0.002 (2)0.015 (2)0.004 (2)
C360.046 (4)0.028 (3)0.048 (4)0.002 (3)0.004 (3)0.007 (3)
C150.028 (3)0.032 (3)0.033 (3)0.010 (2)0.001 (2)0.004 (2)
C140.025 (3)0.043 (3)0.049 (4)0.002 (3)0.003 (3)0.014 (3)
N10.041 (3)0.030 (3)0.039 (3)0.012 (2)0.020 (2)0.017 (2)
C450.058 (4)0.039 (3)0.039 (3)0.025 (3)0.017 (3)0.017 (3)
C240.045 (4)0.036 (3)0.050 (4)0.006 (3)0.008 (3)0.016 (3)
C120.032 (3)0.023 (3)0.033 (3)0.005 (2)0.009 (2)0.000 (2)
C250.056 (4)0.024 (3)0.059 (4)0.013 (3)0.018 (3)0.014 (3)
C230.038 (3)0.047 (4)0.039 (3)0.007 (3)0.009 (3)0.008 (3)
C420.042 (3)0.022 (3)0.036 (3)0.002 (2)0.020 (3)0.002 (2)
C430.064 (4)0.026 (3)0.038 (3)0.002 (3)0.029 (3)0.006 (3)
C330.098 (6)0.018 (3)0.033 (3)0.006 (3)0.016 (4)0.004 (2)
Br20.0311 (11)0.0207 (10)0.0296 (9)0.0008 (9)0.0076 (8)0.0047 (7)
C3A0.049 (6)0.009 (4)0.028 (5)0.007 (4)0.021 (4)0.000 (4)
O3A0.047 (12)0.032 (10)0.044 (10)0.011 (7)0.006 (7)0.007 (6)
Br10.0226 (10)0.0286 (12)0.0253 (9)0.0057 (7)0.0049 (7)0.0087 (7)
C3B0.049 (6)0.009 (4)0.028 (5)0.007 (4)0.021 (4)0.000 (4)
O3B0.064 (13)0.042 (8)0.063 (10)0.006 (8)0.024 (8)0.006 (6)
C4B0.029 (10)0.025 (9)0.023 (8)0.003 (8)0.001 (7)0.001 (7)
C5B0.038 (5)0.029 (4)0.034 (4)0.006 (4)0.004 (4)0.004 (3)
C6B0.047 (18)0.014 (15)0.040 (12)0.004 (11)0.014 (11)0.009 (11)
C4A0.027 (5)0.022 (4)0.026 (4)0.000 (4)0.008 (4)0.001 (4)
C5A0.038 (5)0.029 (4)0.034 (4)0.006 (4)0.004 (4)0.004 (3)
C6A0.050 (9)0.024 (10)0.059 (9)0.006 (8)0.020 (6)0.004 (8)
Geometric parameters (Å, º) top
Re1—C3B1.866 (15)C13—H130.95
Re1—C21.952 (5)C16—C151.379 (7)
Re1—C11.962 (6)C16—H160.95
Re1—C3A1.968 (18)C41—C421.385 (8)
Re1—P22.4375 (14)C36—H360.95
Re1—P12.4583 (15)C15—C141.394 (8)
Re1—Br22.617 (3)C15—H150.95
Re1—Br12.619 (2)C14—H140.95
P2—N11.702 (5)N1—C4A1.478 (9)
P2—C311.820 (5)N1—C4B1.619 (18)
P2—C411.828 (5)C45—H450.95
P2—P12.6897 (18)C24—C251.376 (9)
P1—N11.713 (4)C24—C231.386 (8)
P1—C211.804 (5)C24—H240.95
P1—C111.824 (5)C12—H120.95
C2—O21.146 (6)C25—H250.95
C34—C331.361 (10)C23—H230.95
C34—C351.366 (10)C42—C431.388 (8)
C34—H340.95C42—H420.95
C35—C361.387 (9)C43—H430.95
C35—H350.95C33—H330.95
O1—C11.142 (6)C3A—O3A1.12 (2)
C32—C311.392 (7)C3B—O3B1.20 (2)
C32—C331.406 (8)C4B—C5B1.52 (2)
C32—H320.95C4B—H4B10.99
C44—C451.370 (9)C4B—H4B20.99
C44—C431.400 (9)C5B—C6B1.50 (4)
C44—H440.95C5B—H5B10.99
C46—C451.388 (8)C5B—H5B20.99
C46—C411.393 (8)C6B—H6B10.98
C46—H460.95C6B—H6B20.98
C31—C361.386 (8)C6B—H6B30.98
C11—C161.392 (7)C4A—C5A1.500 (13)
C11—C121.402 (7)C4A—H4A10.99
C26—C251.382 (8)C4A—H4A20.99
C26—C211.408 (7)C5A—C6A1.52 (3)
C26—H260.95C5A—H5A10.99
C22—C231.394 (8)C5A—H5A20.99
C22—C211.395 (7)C6A—H6A10.98
C22—H220.95C6A—H6A20.98
C13—C121.375 (7)C6A—H6A30.98
C13—C141.383 (8)
C3B—Re1—C288.2 (3)C15—C16—H16119.6
C3B—Re1—C190.8 (3)C11—C16—H16119.6
C2—Re1—C193.7 (2)C42—C41—C46120.2 (5)
C3B—Re1—C3A177.1 (5)C42—C41—P2119.6 (4)
C2—Re1—C3A93.9 (5)C46—C41—P2120.2 (4)
C1—Re1—C3A87.1 (4)C31—C36—C35120.4 (7)
C3B—Re1—P287.2 (3)C31—C36—H36119.8
C2—Re1—P295.62 (16)C35—C36—H36119.8
C1—Re1—P2170.40 (16)C16—C15—C14119.9 (5)
C3A—Re1—P294.6 (4)C16—C15—H15120.1
C3B—Re1—P190.3 (3)C14—C15—H15120.1
C2—Re1—P1162.26 (16)C13—C14—C15119.7 (5)
C1—Re1—P1104.00 (16)C13—C14—H14120.2
C3A—Re1—P188.3 (4)C15—C14—H14120.2
P2—Re1—P166.65 (4)C4A—N1—P2130.1 (4)
C3B—Re1—Br25.0 (3)C4B—N1—P2121.1 (6)
C2—Re1—Br284.41 (16)C4A—N1—P1122.9 (4)
C1—Re1—Br287.79 (16)C4B—N1—P1128.7 (6)
C3A—Re1—Br2174.5 (4)P2—N1—P1103.9 (2)
P2—Re1—Br290.82 (7)C44—C45—C46120.5 (6)
P1—Re1—Br294.96 (7)C44—C45—H45119.7
C3B—Re1—Br1175.4 (3)C46—C45—H45119.7
C2—Re1—Br193.86 (16)C25—C24—C23120.3 (6)
C1—Re1—Br185.02 (16)C25—C24—H24119.9
C3A—Re1—Br12.1 (4)C23—C24—H24119.9
P2—Re1—Br196.64 (7)C13—C12—C11120.2 (5)
P1—Re1—Br188.92 (7)C13—C12—H12119.9
Br2—Re1—Br1172.48 (9)C11—C12—H12119.9
N1—P2—C31111.2 (3)C24—C25—C26120.3 (5)
N1—P2—C41106.0 (2)C24—C25—H25119.8
C31—P2—C41102.2 (2)C26—C25—H25119.8
N1—P2—Re195.10 (15)C24—C23—C22119.6 (6)
C31—P2—Re1113.44 (16)C24—C23—H23120.2
C41—P2—Re1128.11 (19)C22—C23—H23120.2
C31—P2—P1126.09 (18)C41—C42—C43120.4 (6)
C41—P2—P1125.45 (16)C41—C42—H42119.8
Re1—P2—P157.05 (4)C43—C42—H42119.8
N1—P1—C21108.3 (2)C42—C43—C44118.9 (6)
N1—P1—C11104.6 (2)C42—C43—H43120.5
C21—P1—C11101.6 (2)C44—C43—H43120.5
N1—P1—Re194.08 (16)C34—C33—C32120.4 (7)
C21—P1—Re1117.41 (18)C34—C33—H33119.8
C11—P1—Re1128.48 (17)C32—C33—H33119.8
C21—P1—P2120.47 (17)O3A—C3A—Re1176 (2)
C11—P1—P2128.68 (17)O3B—C3B—Re1174.9 (14)
Re1—P1—P256.30 (4)C5B—C4B—N1106.8 (12)
O2—C2—Re1175.1 (5)C5B—C4B—H4B1110.4
C33—C34—C35120.5 (6)N1—C4B—H4B1110.4
C33—C34—H34119.7C5B—C4B—H4B2110.4
C35—C34—H34119.7N1—C4B—H4B2110.4
C34—C35—C36120.2 (7)H4B1—C4B—H4B2108.6
C34—C35—H35119.9C6B—C5B—C4B108.5 (16)
C36—C35—H35119.9C6B—C5B—H5B1110
O1—C1—Re1178.4 (5)C4B—C5B—H5B1110
C31—C32—C33119.3 (6)C6B—C5B—H5B2110
C31—C32—H32120.3C4B—C5B—H5B2110
C33—C32—H32120.3H5B1—C5B—H5B2108.4
C45—C44—C43120.6 (6)C5B—C6B—H6B1109.5
C45—C44—H44119.7C5B—C6B—H6B2109.5
C43—C44—H44119.7H6B1—C6B—H6B2109.5
C45—C46—C41119.3 (6)C5B—C6B—H6B3109.5
C45—C46—H46120.3H6B1—C6B—H6B3109.5
C41—C46—H46120.3H6B2—C6B—H6B3109.5
C36—C31—C32119.1 (5)N1—C4A—C5A110.2 (7)
C36—C31—P2124.1 (4)N1—C4A—H4A1109.6
C32—C31—P2116.3 (4)C5A—C4A—H4A1109.6
C16—C11—C12118.9 (5)N1—C4A—H4A2109.6
C16—C11—P1120.6 (4)C5A—C4A—H4A2109.6
C12—C11—P1120.4 (4)H4A1—C4A—H4A2108.1
C25—C26—C21120.7 (5)C4A—C5A—C6A111.5 (9)
C25—C26—H26119.7C4A—C5A—H5A1109.3
C21—C26—H26119.7C6A—C5A—H5A1109.3
C23—C22—C21120.9 (5)C4A—C5A—H5A2109.3
C23—C22—H22119.5C6A—C5A—H5A2109.3
C21—C22—H22119.5H5A1—C5A—H5A2108
C22—C21—C26118.1 (5)C5A—C6A—H6A1109.5
C22—C21—P1118.4 (4)C5A—C6A—H6A2109.5
C26—C21—P1123.5 (4)H6A1—C6A—H6A2109.5
C12—C13—C14120.6 (6)C5A—C6A—H6A3109.5
C12—C13—H13119.7H6A1—C6A—H6A3109.5
C14—C13—H13119.7H6A2—C6A—H6A3109.5
C15—C16—C11120.7 (5)
C3B—Re1—P2—N188.4 (4)N1—P1—C11—C1298.5 (4)
C2—Re1—P2—N1176.3 (2)C21—P1—C11—C12148.8 (4)
C3A—Re1—P2—N189.3 (5)Re1—P1—C11—C128.9 (5)
P1—Re1—P2—N13.19 (18)P2—P1—C11—C1265.3 (5)
Br2—Re1—P2—N191.86 (19)C23—C22—C21—C260.4 (8)
Br1—Re1—P2—N189.13 (19)C23—C22—C21—P1177.4 (5)
C3B—Re1—P2—C3127.4 (4)C25—C26—C21—C222.4 (9)
C2—Re1—P2—C3160.6 (2)C25—C26—C21—P1179.3 (5)
C3A—Re1—P2—C31154.9 (5)N1—P1—C21—C22165.6 (4)
P1—Re1—P2—C31119.0 (2)C11—P1—C21—C2255.7 (5)
Br2—Re1—P2—C3123.9 (2)Re1—P1—C21—C2289.6 (4)
Br1—Re1—P2—C31155.1 (2)P2—P1—C21—C22154.8 (4)
C3B—Re1—P2—C41156.7 (4)N1—P1—C21—C2617.6 (6)
C2—Re1—P2—C4168.8 (3)C11—P1—C21—C26127.4 (5)
C3A—Re1—P2—C4125.6 (5)Re1—P1—C21—C2687.2 (5)
P1—Re1—P2—C41111.7 (2)P2—P1—C21—C2622.1 (6)
Br2—Re1—P2—C41153.2 (2)C12—C11—C16—C150.3 (7)
Br1—Re1—P2—C4125.8 (2)P1—C11—C16—C15176.0 (4)
Br1—Re1—P2—C4125.8 (2)C45—C46—C41—C420.4 (8)
C3B—Re1—P2—P191.5 (3)C45—C46—C41—P2179.8 (4)
C2—Re1—P2—P1179.50 (15)N1—P2—C41—C4277.5 (4)
C3A—Re1—P2—P186.2 (4)C31—P2—C41—C4239.0 (5)
Br2—Re1—P2—P195.04 (7)Re1—P2—C41—C42172.5 (3)
Br1—Re1—P2—P185.94 (7)P1—P2—C41—C42114.4 (4)
Br1—Re1—P2—P185.94 (7)N1—P2—C41—C46101.9 (5)
C3B—Re1—P1—N183.7 (4)C31—P2—C41—C46141.6 (4)
C2—Re1—P1—N11.5 (5)Re1—P2—C41—C468.1 (5)
C1—Re1—P1—N1174.5 (2)P1—P2—C41—C4665.0 (5)
C3A—Re1—P1—N198.9 (4)C32—C31—C36—C350.2 (8)
P2—Re1—P1—N13.16 (18)P2—C31—C36—C35171.9 (4)
Br2—Re1—P1—N185.59 (19)C34—C35—C36—C310.2 (9)
Br1—Re1—P1—N1100.87 (19)C11—C16—C15—C140.4 (8)
Br1—Re1—P1—N1100.87 (19)C12—C13—C14—C150.2 (9)
C3B—Re1—P1—C21163.2 (4)C16—C15—C14—C130.1 (9)
C2—Re1—P1—C21111.5 (5)C31—P2—N1—C4A78.0 (6)
C1—Re1—P1—C2172.4 (2)C41—P2—N1—C4A32.3 (7)
C3A—Re1—P1—C2114.2 (4)Re1—P2—N1—C4A164.4 (6)
P2—Re1—P1—C21109.92 (19)P1—P2—N1—C4A160.1 (8)
Br2—Re1—P1—C21161.3 (2)C31—P2—N1—C4B32.4 (8)
Br1—Re1—P1—C2112.22 (19)C41—P2—N1—C4B77.9 (8)
Br1—Re1—P1—C2112.22 (19)Re1—P2—N1—C4B150.0 (7)
C3B—Re1—P1—C1128.6 (4)P1—P2—N1—C4B154.3 (9)
C2—Re1—P1—C11113.8 (5)C31—P2—N1—P1121.9 (3)
C1—Re1—P1—C1162.3 (3)C41—P2—N1—P1127.7 (3)
C3A—Re1—P1—C11148.8 (5)Re1—P2—N1—P14.3 (2)
P2—Re1—P1—C11115.4 (2)C21—P1—N1—C4A45.5 (6)
Br2—Re1—P1—C1126.7 (2)C11—P1—N1—C4A62.3 (6)
Br1—Re1—P1—C11146.9 (2)Re1—P1—N1—C4A166.2 (5)
Br1—Re1—P1—C11146.9 (2)P2—P1—N1—C4A161.9 (7)
C3B—Re1—P1—P286.8 (3)C21—P1—N1—C4B92.0 (9)
C2—Re1—P1—P21.6 (5)C11—P1—N1—C4B15.8 (9)
C1—Re1—P1—P2177.70 (16)Re1—P1—N1—C4B147.4 (8)
C3A—Re1—P1—P295.7 (4)P2—P1—N1—C4B151.6 (9)
Br2—Re1—P1—P288.75 (7)C21—P1—N1—P2116.4 (3)
Br1—Re1—P1—P297.70 (7)C11—P1—N1—P2135.8 (3)
Br1—Re1—P1—P297.70 (7)Re1—P1—N1—P24.3 (2)
C31—P2—P1—N178.3 (4)C43—C44—C45—C461.3 (9)
C41—P2—P1—N169.0 (4)C41—C46—C45—C440.4 (9)
Re1—P2—P1—N1174.9 (3)C14—C13—C12—C110.3 (9)
N1—P2—P1—C2180.7 (4)C16—C11—C12—C130.0 (8)
C31—P2—P1—C21159.0 (3)P1—C11—C12—C13176.4 (4)
C41—P2—P1—C2111.7 (3)C23—C24—C25—C261.1 (10)
Re1—P2—P1—C21104.5 (2)C21—C26—C25—C241.7 (10)
N1—P2—P1—C1159.8 (4)C25—C24—C23—C223.1 (10)
C31—P2—P1—C1118.6 (3)C21—C22—C23—C242.3 (9)
C41—P2—P1—C11128.7 (3)C46—C41—C42—C430.4 (8)
Re1—P2—P1—C11115.1 (2)P2—C41—C42—C43179.8 (4)
N1—P2—P1—Re1174.9 (3)C41—C42—C43—C440.4 (8)
C31—P2—P1—Re196.5 (2)C45—C44—C43—C421.3 (8)
C41—P2—P1—Re1116.2 (2)C35—C34—C33—C320.3 (9)
C33—C34—C35—C360.1 (9)C31—C32—C33—C340.2 (8)
C33—C32—C31—C360.0 (8)C2—Re1—Br1—Br10.00 (6)
C33—C32—C31—P2172.7 (4)C1—Re1—Br1—Br10.00 (6)
N1—P2—C31—C3619.3 (5)C3A—Re1—Br1—Br10.0 (14)
C41—P2—C31—C36132.0 (5)P2—Re1—Br1—Br10.00 (6)
Re1—P2—C31—C3686.5 (5)P1—Re1—Br1—Br10.00 (6)
P1—P2—C31—C3621.2 (6)C4A—N1—C4B—C5B7.6 (9)
N1—P2—C31—C32168.4 (4)P2—N1—C4B—C5B124.3 (10)
C41—P2—C31—C3255.7 (4)P1—N1—C4B—C5B88.3 (12)
Re1—P2—C31—C3285.8 (4)N1—C4B—C5B—C6B176.0 (19)
P1—P2—C31—C32151.1 (3)C4B—N1—C4A—C5A9.0 (10)
N1—P1—C11—C1677.7 (4)P2—N1—C4A—C5A99.9 (7)
C21—P1—C11—C1634.9 (5)P1—N1—C4A—C5A103.3 (7)
Re1—P1—C11—C16174.8 (3)N1—C4A—C5A—C6A170.2 (13)
P2—P1—C11—C16111.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3B0.952.513.39 (2)155
C14—H14···Br1i0.952.813.524 (6)133
C46—H46···Br10.952.633.519 (6)157
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ReBr(C27H27NP2)(CO)3]
Mr777.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0120 (2), 17.1620 (3), 15.2090 (2)
β (°) 96.735 (2)
V3)2854.48 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.80
Crystal size (mm)0.1 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur 3 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.595, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
22483, 6863, 5197
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.03
No. of reflections6863
No. of parameters387
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.95, 1.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2004), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Re1—C3B1.866 (15)Re1—P22.4375 (14)
Re1—C21.952 (5)Re1—P12.4583 (15)
Re1—C11.962 (6)Re1—Br22.617 (3)
Re1—C3A1.968 (18)Re1—Br12.619 (2)
P2—Re1—P166.65 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3B0.952.513.39 (2)155.1
C14—H14···Br1i0.952.813.524 (6)133
C46—H46···Br10.952.633.519 (6)156.8
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Thanks go to Miss. N. Cloete for the preparation of the ligand. The University of the Free State and Professor A. Roodt are gratefully aknowledged for financial support.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenberg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGraziani, R. & Casellato, U. (1996). Acta Cryst. C52, 850–852.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.  Google Scholar
First citationMundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRossi, R., Marchi, A., Marvelli, L., Magon, L., Peruzzini, M., Casellato, U. & Graziani, R. (1993). J. Chem. Soc. Dalton Trans. pp. 723–729.  CSD CrossRef Web of Science Google Scholar
First citationSchutte, M. & Visser, H. G. (2008). Acta Cryst. E64, m1226–m1227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195–m3196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteil, P., Nagel, U. & Beck, W. (1989). J. Organomet. Chem. 366, 313–331.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1575-m1576
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds