organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3044-o3045

Imidazolium 4-amino­benzoate

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 22 October 2009; accepted 3 November 2009; online 11 November 2009)

In the title salt, C3H5N2+·C7H6NO2, the carboxyl­ate group of the 4-amino­benzoate anion forms a dihedral angle of 13.23 (17)° with respect to the benzene ring. There are N—H⋯O hydrogen-bonding inter­actions between the anion and cation, and weak inter­molecular C—H⋯O contacts with carboxyl­ate O-atom acceptors of the 4-amino­benzoate anion result in extended three-dimensional R44(22) and R56(30) edge-fused rings along the [100], [010] and [001] directions.

Related literature

For the anti­microbial and anti­protozoal biological activity of imidazole, see: Kopanska et al. (2004[Kopanska, K., Najda, A., Justyna, Z., Chomicz, L., Piekarczyk, J., Myja, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]); Sondhi et al. (2002[Sondhi, S. M., Rajvanshi, S., Johar, M., Bharti, N., Azam, A. & Singh, A. K. (2002). Eur. J. Med. Chem. 37, 835-843.]). For the biological activity of 4-amino­benzoic acid, see: Lai & Marsh (1967[Lai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885-893.]); Robinson (1966[Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541-662. London: Pergamon.]). For related structures, see: Moreno-Fuquen et al. (1996[Moreno-Fuquen, R., De Almeida Santos, R. H. & Lechat, J. R. (1996). Acta Cryst. C52, 220-222.], 2009[Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009). Acta Cryst. E65, o2717.]); McMullan et al. (1979[McMullan, R. K., Epstein, J., Ruble, J. R. & Craven, B. M. (1979). Acta Cryst. B35, 688-691.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For hydrogen bonds, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2+·C7H6NO2

  • Mr = 205.22

  • Monoclinic, P 21 /n

  • a = 7.2038 (5) Å

  • b = 11.6812 (6) Å

  • c = 12.0152 (6) Å

  • β = 105.223 (6)°

  • V = 975.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.945, Tmax = 1.000

  • 8533 measured reflections

  • 2360 independent reflections

  • 1700 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.115

  • S = 1.02

  • 2360 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4N⋯O1i 0.93 (2) 1.76 (2) 2.6869 (15) 171 (2)
N2—H3N⋯O1ii 0.956 (19) 1.742 (19) 2.6938 (15) 173.5 (19)
N1—H1N⋯O2iii 0.94 (2) 2.17 (2) 2.9495 (16) 139.3 (17)
N1—H2N⋯O1ii 0.89 (2) 2.20 (2) 3.0149 (17) 152.0 (16)
C6—H6⋯O2iv 0.95 2.55 3.3533 (16) 142
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title adduct, C7H6NO2-, C3H5N2+ (imidazolium 4-aminobenzoate), (I), is part of a series of studies on imidazole, which have been made in our research group (Moreno-Fuquen et al., 2009). Imidazole derivatives have a wide variety of agents holding biological activities and is used in the field of pharmaceuticals and medicine like antimicrobial and antiprotozoal (Kopanska et al., 2004) or anti-inflammatory agents (Sondhi et al., 2002). In turn, 4-Aminobenzoic acid (PABA) (Lai & Marsh, 1967) is an important biological molecule, involving the synthesis of folic acid (Robinson, 1966) and promoting the extension of hydrogen-bonded network structures. To continue research on the structural behavior of the imidazole molecule with different hydrogen bond donors, the system imidazolium 4-aminobenzoate adduct (I), is reported. The 4-aminobenzoic acid and 4-nitropyridine N-oxide (PABA+NPNO) molecular complex (Moreno-Fuquen et al., 1996) and the PABA and imidazole (IM) free molecules (McMullan et al., 1979) may be used as reference systems in order to compare to the title imidazolium salt. The molecular structure of (I) is shown in Fig. 1. The title compound shows a dihedral angle of 23.71 (8)°, between benzene and imidazole planes. In turn, the carboxylate group of 4-aminobenzoate shows a dihedral angle of 13.23 (17)° with respect to the benzene ring, following the same structural behavior of the group in the free PABA molecule and in the PABA+NPNO adduct. The (PABA), as well as other organic acids, shows the formation of centrosymmetric hydrogen-bonded dimers in its structure. As a product of the reaction with imidazole (IM), the dimer in the PABA molecule is broken, and begins the transference of the proton to the basic N-atom of the IM molecule forming the title adduct. Some structural changes in the formation of the imidazolium salt, are observed: N2—C8 bond length changes from 1.358 in the free IM molecule, to 1.3281 (17) Å in (I); C1—O1 and C6—C7 bond lengths change from 1.210 (4) and 1.366 (5) Å in the (PABA +NPNO) adduct to 1.2368 (16) and 1.3850 (18) Å in the title adduct. The other bond lengths and bond angles of (I) are in good agreement with the standard values and correspond to those observed in the IM free molecule and (PABA+NPNO) reference systems. The formation of the salt, resulting in N—H···O hydrogen-bonding interactions and C—H···O intermolecular weak contacts with carboxylate O-atoms acceptors: The two components of the adduct are connected via intermolecular N—H···O hydrogen bonds and C—H···O weak contacts, (Table 1) (Nardelli, 1995) and these interactions define an infinite three dimensional framework. In a first substructure, the strongest hydrogen bonds N—H···O interactions are responsible for crystal growth. Indeed, there are two intermolecular N—H···O hydrogen bond interactions which link one molecule of PABA and 2 molecules of IM. A third N—H···O hydrogen bond links two PABA molecules. All these interactions link the moieties into molecular sheets that extend in the b and c directions forming R56(30) (Etter, 1990) edge-fused rings (Fig. 2). In a second substructure, the PABA molecules are linked by N—H···O hydrogen-bonding and intermolecular C—H···O weak interactions which form a R44(22) e dge-fused rings along a and c directions (Fig 3). All of these interactions define the bulk structure of the crystal.

Related literature top

For the antimicrobial and antiprotozoal biological activity of imidazole, see: Kopanska et al. (2004); Sondhi et al. (2002). For the biological activity of 4-aminobenzoic acid, see: Lai & Marsh (1967); Robinson (1966). For related structures, see: Moreno-Fuquen et al. (1996, 2009); McMullan et al. (1979). For hydrogen-bond motifs, see: Etter (1990); For hydrogen bonds, see: Nardelli (1995).

Experimental top

The synthesis of the title compound (I) was carried out by slow evaporation of equimolar quantities of 4-aminobenzoic acid (0.625 g, 0.0046 mol) and imidazole (0.310 g) in 100 ml of a mixture of dry acetonitrile. Colourless blocks of a good quality, suitable for X-ray analysis with a melting point of 371 (1) K were obtained. The initial reagents were purchased from Aldrich Chemical Co., and were used as received.

Refinement top

All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing in the unit cell of (I) viewed down the a axis, showing the formation of R56(30) e dge-fused rings and also the hydrogen-bonding interactions as broken lines. Symmetry code: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) -x, -y + 2, -z + 1.
[Figure 3] Fig. 3. The packing in the unit cell of (I) viewed down the b axis, showing the formation of R44(22) e dge-fused rings and also the hydrogen-bonding interactions as broken lines. Symmetry code: (i) x + 1/2, -y + 3/2, z - 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2.
Imidazolium 4-aminobenzoate top
Crystal data top
C3H5N2+·C7H6NO2F(000) = 432
Mr = 205.22Dx = 1.397 Mg m3
Monoclinic, P21/nMelting point: 443.0(10) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.2038 (5) ÅCell parameters from 3056 reflections
b = 11.6812 (6) Åθ = 2.5–30.9°
c = 12.0152 (6) ŵ = 0.10 mm1
β = 105.223 (6)°T = 123 K
V = 975.59 (10) Å3Fragment, colourless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2360 independent reflections
Radiation source: fine-focus sealed tube1700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
h = 99
Tmin = 0.945, Tmax = 1.000k = 1315
8533 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2360 reflectionsΔρmax = 0.28 e Å3
153 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.213 (14)
Crystal data top
C3H5N2+·C7H6NO2V = 975.59 (10) Å3
Mr = 205.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2038 (5) ŵ = 0.10 mm1
b = 11.6812 (6) ÅT = 123 K
c = 12.0152 (6) Å0.20 × 0.15 × 0.12 mm
β = 105.223 (6)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
2360 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
1700 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 1.000Rint = 0.049
8533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
2360 reflectionsΔρmin = 0.36 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13700 (14)0.80374 (8)0.58020 (7)0.0227 (3)
O20.27846 (15)0.96304 (8)0.54056 (8)0.0243 (3)
N10.2159 (2)0.68622 (11)0.07332 (10)0.0247 (3)
N20.77001 (18)0.91059 (11)0.13156 (10)0.0246 (3)
N30.84977 (17)1.06234 (10)0.23605 (10)0.0231 (3)
C10.2104 (2)0.86668 (12)0.51343 (11)0.0201 (3)
C20.21134 (19)0.81695 (11)0.39852 (10)0.0187 (3)
C30.3206 (2)0.86798 (12)0.33249 (11)0.0218 (3)
H30.39540.93380.36130.026*
C40.3225 (2)0.82474 (12)0.22568 (11)0.0222 (3)
H40.39750.86150.18190.027*
C50.2148 (2)0.72728 (12)0.18135 (11)0.0206 (3)
C60.1034 (2)0.67656 (11)0.24708 (11)0.0212 (3)
H60.02740.61120.21810.025*
C70.10240 (19)0.72053 (11)0.35398 (11)0.0204 (3)
H70.02650.68450.39770.025*
C80.7922 (2)0.95506 (12)0.23596 (12)0.0238 (3)
H80.77010.91580.30050.029*
C90.8142 (2)0.99372 (12)0.06171 (12)0.0268 (4)
H90.80990.98590.01760.032*
C100.8650 (2)1.08847 (13)0.12684 (12)0.0266 (4)
H100.90391.15970.10210.032*
H1N0.175 (3)0.6098 (17)0.0598 (16)0.048 (5)*
H2N0.323 (3)0.7036 (15)0.0534 (16)0.044 (5)*
H3N0.729 (3)0.8341 (16)0.1097 (16)0.045 (5)*
H4N0.860 (3)1.1143 (18)0.2961 (19)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (6)0.0203 (5)0.0205 (5)0.0014 (4)0.0109 (4)0.0007 (4)
O20.0344 (6)0.0186 (5)0.0202 (5)0.0044 (4)0.0076 (4)0.0017 (4)
N10.0300 (8)0.0252 (7)0.0200 (6)0.0044 (6)0.0085 (5)0.0036 (5)
N20.0290 (7)0.0209 (6)0.0257 (6)0.0012 (5)0.0103 (5)0.0042 (5)
N30.0257 (7)0.0216 (6)0.0233 (6)0.0008 (5)0.0083 (5)0.0044 (5)
C10.0210 (7)0.0198 (7)0.0188 (6)0.0031 (6)0.0041 (5)0.0016 (5)
C20.0213 (7)0.0176 (7)0.0167 (6)0.0013 (5)0.0042 (5)0.0011 (5)
C30.0252 (8)0.0194 (7)0.0209 (6)0.0029 (6)0.0063 (6)0.0002 (5)
C40.0260 (8)0.0225 (7)0.0199 (6)0.0033 (6)0.0095 (5)0.0018 (5)
C50.0215 (7)0.0214 (7)0.0178 (6)0.0029 (6)0.0033 (5)0.0004 (5)
C60.0216 (7)0.0186 (7)0.0222 (6)0.0026 (6)0.0038 (5)0.0010 (5)
C70.0208 (7)0.0197 (7)0.0215 (7)0.0009 (6)0.0066 (5)0.0021 (5)
C80.0272 (8)0.0217 (7)0.0231 (7)0.0020 (6)0.0076 (6)0.0020 (5)
C90.0305 (8)0.0281 (8)0.0247 (7)0.0031 (6)0.0122 (6)0.0021 (6)
C100.0308 (8)0.0244 (8)0.0269 (7)0.0005 (6)0.0118 (6)0.0021 (6)
Geometric parameters (Å, º) top
O1—C11.2987 (16)C2—C71.3964 (18)
O2—C11.2368 (16)C3—C41.3825 (18)
N1—C51.3858 (17)C3—H30.9500
N1—H1N0.94 (2)C4—C51.4016 (19)
N1—H2N0.89 (2)C4—H40.9500
N2—C81.3281 (17)C5—C61.397 (2)
N2—C91.3745 (19)C6—C71.3850 (18)
N2—H3N0.956 (19)C6—H60.9500
N3—C81.3200 (19)C7—H70.9500
N3—C101.3794 (18)C8—H80.9500
N3—H4N0.93 (2)C9—C101.349 (2)
C1—C21.4996 (18)C9—H90.9500
C2—C31.3900 (19)C10—H100.9500
C5—N1—H1N114.3 (12)C5—C4—H4119.7
C5—N1—H2N113.1 (12)N1—C5—C6121.89 (13)
H1N—N1—H2N115.1 (18)N1—C5—C4119.88 (13)
C8—N2—C9108.10 (12)C6—C5—C4118.19 (12)
C8—N2—H3N125.2 (12)C7—C6—C5120.69 (12)
C9—N2—H3N126.6 (12)C7—C6—H6119.7
C8—N3—C10108.23 (12)C5—C6—H6119.7
C8—N3—H4N125.5 (13)C6—C7—C2121.02 (13)
C10—N3—H4N125.7 (13)C6—C7—H7119.5
O2—C1—O1123.37 (12)C2—C7—H7119.5
O2—C1—C2119.86 (12)N3—C8—N2109.39 (13)
O1—C1—C2116.77 (12)N3—C8—H8125.3
C3—C2—C7118.20 (12)N2—C8—H8125.3
C3—C2—C1119.96 (12)C10—C9—N2107.24 (13)
C7—C2—C1121.83 (12)C10—C9—H9126.4
C4—C3—C2121.20 (13)N2—C9—H9126.4
C4—C3—H3119.4C9—C10—N3107.04 (13)
C2—C3—H3119.4C9—C10—H10126.5
C3—C4—C5120.68 (13)N3—C10—H10126.5
C3—C4—H4119.7
O2—C1—C2—C312.6 (2)C4—C5—C6—C71.1 (2)
O1—C1—C2—C3167.05 (12)C5—C6—C7—C20.5 (2)
O2—C1—C2—C7166.47 (12)C3—C2—C7—C60.2 (2)
O1—C1—C2—C713.89 (18)C1—C2—C7—C6179.26 (12)
C7—C2—C3—C40.2 (2)C10—N3—C8—N20.15 (16)
C1—C2—C3—C4179.26 (12)C9—N2—C8—N30.43 (16)
C2—C3—C4—C50.5 (2)C8—N2—C9—C100.55 (17)
C3—C4—C5—N1178.96 (13)N2—C9—C10—N30.45 (17)
C3—C4—C5—C61.1 (2)C8—N3—C10—C90.19 (16)
N1—C5—C6—C7178.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4N···O1i0.93 (2)1.76 (2)2.6869 (15)171 (2)
N2—H3N···O1ii0.956 (19)1.742 (19)2.6938 (15)173.5 (19)
N1—H1N···O2iii0.94 (2)2.17 (2)2.9495 (16)139.3 (17)
N1—H2N···O1ii0.89 (2)2.20 (2)3.0149 (17)152.0 (16)
C6—H6···O2iv0.952.553.3533 (16)142
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC3H5N2+·C7H6NO2
Mr205.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)7.2038 (5), 11.6812 (6), 12.0152 (6)
β (°) 105.223 (6)
V3)975.59 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
Tmin, Tmax0.945, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8533, 2360, 1700
Rint0.049
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.02
No. of reflections2360
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4N···O1i0.93 (2)1.76 (2)2.6869 (15)171 (2)
N2—H3N···O1ii0.956 (19)1.742 (19)2.6938 (15)173.5 (19)
N1—H1N···O2iii0.94 (2)2.17 (2)2.9495 (16)139.3 (17)
N1—H2N···O1ii0.89 (2)2.20 (2)3.0149 (17)152.0 (16)
C6—H6···O2iv0.952.553.3533 (16)142
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also wishes to thank the Universidad del Valle, Colombia, and Instituto de Química de São Carlos, Brazil for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKopanska, K., Najda, A., Justyna, Z., Chomicz, L., Piekarczyk, J., Myja, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Web of Science PubMed CAS Google Scholar
First citationLai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885–893.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMullan, R. K., Epstein, J., Ruble, J. R. & Craven, B. M. (1979). Acta Cryst. B35, 688–691.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMoreno-Fuquen, R., De Almeida Santos, R. H. & Lechat, J. R. (1996). Acta Cryst. C52, 220–222.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009). Acta Cryst. E65, o2717.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRobinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662. London: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Rajvanshi, S., Johar, M., Bharti, N., Azam, A. & Singh, A. K. (2002). Eur. J. Med. Chem. 37, 835–843.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3044-o3045
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds