organic compounds
Imidazolium 4-aminobenzoate
aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title salt, C3H5N2+·C7H6NO2−, the carboxylate group of the 4-aminobenzoate anion forms a dihedral angle of 13.23 (17)° with respect to the benzene ring. There are N—H⋯O hydrogen-bonding interactions between the anion and cation, and weak intermolecular C—H⋯O contacts with carboxylate O-atom acceptors of the 4-aminobenzoate anion result in extended three-dimensional R44(22) and R56(30) edge-fused rings along the [100], [010] and [001] directions.
Related literature
For the antimicrobial and antiprotozoal biological activity of imidazole, see: Kopanska et al. (2004); Sondhi et al. (2002). For the biological activity of 4-aminobenzoic acid, see: Lai & Marsh (1967); Robinson (1966). For related structures, see: Moreno-Fuquen et al. (1996, 2009); McMullan et al. (1979). For hydrogen-bond motifs, see: Etter (1990). For hydrogen bonds, see: Nardelli (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053680904625X/fj2253sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680904625X/fj2253Isup2.hkl
The synthesis of the title compound (I) was carried out by slow evaporation of equimolar quantities of 4-aminobenzoic acid (0.625 g, 0.0046 mol) and imidazole (0.310 g) in 100 ml of a mixture of dry acetonitrile. Colourless blocks of a good quality, suitable for X-ray analysis with a melting point of 371 (1) K were obtained. The initial reagents were purchased from Aldrich Chemical Co., and were used as received.
All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The packing in the unit cell of (I) viewed down the a axis, showing the formation of R56(30) e dge-fused rings and also the hydrogen-bonding interactions as broken lines. Symmetry code: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) -x, -y + 2, -z + 1. | |
Fig. 3. The packing in the unit cell of (I) viewed down the b axis, showing the formation of R44(22) e dge-fused rings and also the hydrogen-bonding interactions as broken lines. Symmetry code: (i) x + 1/2, -y + 3/2, z - 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2. |
C3H5N2+·C7H6NO2− | F(000) = 432 |
Mr = 205.22 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/n | Melting point: 443.0(10) K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2038 (5) Å | Cell parameters from 3056 reflections |
b = 11.6812 (6) Å | θ = 2.5–30.9° |
c = 12.0152 (6) Å | µ = 0.10 mm−1 |
β = 105.223 (6)° | T = 123 K |
V = 975.59 (10) Å3 | Fragment, colourless |
Z = 4 | 0.20 × 0.15 × 0.12 mm |
Oxford Diffraction Gemini S diffractometer | 2360 independent reflections |
Radiation source: fine-focus sealed tube | 1700 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 28.0°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.945, Tmax = 1.000 | k = −13→15 |
8533 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.067P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2360 reflections | Δρmax = 0.28 e Å−3 |
153 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.213 (14) |
C3H5N2+·C7H6NO2− | V = 975.59 (10) Å3 |
Mr = 205.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2038 (5) Å | µ = 0.10 mm−1 |
b = 11.6812 (6) Å | T = 123 K |
c = 12.0152 (6) Å | 0.20 × 0.15 × 0.12 mm |
β = 105.223 (6)° |
Oxford Diffraction Gemini S diffractometer | 2360 independent reflections |
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009) | 1700 reflections with I > 2σ(I) |
Tmin = 0.945, Tmax = 1.000 | Rint = 0.049 |
8533 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.28 e Å−3 |
2360 reflections | Δρmin = −0.36 e Å−3 |
153 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.13700 (14) | 0.80374 (8) | 0.58020 (7) | 0.0227 (3) | |
O2 | 0.27846 (15) | 0.96304 (8) | 0.54056 (8) | 0.0243 (3) | |
N1 | 0.2159 (2) | 0.68622 (11) | 0.07332 (10) | 0.0247 (3) | |
N2 | 0.77001 (18) | 0.91059 (11) | 0.13156 (10) | 0.0246 (3) | |
N3 | 0.84977 (17) | 1.06234 (10) | 0.23605 (10) | 0.0231 (3) | |
C1 | 0.2104 (2) | 0.86668 (12) | 0.51343 (11) | 0.0201 (3) | |
C2 | 0.21134 (19) | 0.81695 (11) | 0.39852 (10) | 0.0187 (3) | |
C3 | 0.3206 (2) | 0.86798 (12) | 0.33249 (11) | 0.0218 (3) | |
H3 | 0.3954 | 0.9338 | 0.3613 | 0.026* | |
C4 | 0.3225 (2) | 0.82474 (12) | 0.22568 (11) | 0.0222 (3) | |
H4 | 0.3975 | 0.8615 | 0.1819 | 0.027* | |
C5 | 0.2148 (2) | 0.72728 (12) | 0.18135 (11) | 0.0206 (3) | |
C6 | 0.1034 (2) | 0.67656 (11) | 0.24708 (11) | 0.0212 (3) | |
H6 | 0.0274 | 0.6112 | 0.2181 | 0.025* | |
C7 | 0.10240 (19) | 0.72053 (11) | 0.35398 (11) | 0.0204 (3) | |
H7 | 0.0265 | 0.6845 | 0.3977 | 0.025* | |
C8 | 0.7922 (2) | 0.95506 (12) | 0.23596 (12) | 0.0238 (3) | |
H8 | 0.7701 | 0.9158 | 0.3005 | 0.029* | |
C9 | 0.8142 (2) | 0.99372 (12) | 0.06171 (12) | 0.0268 (4) | |
H9 | 0.8099 | 0.9859 | −0.0176 | 0.032* | |
C10 | 0.8650 (2) | 1.08847 (13) | 0.12684 (12) | 0.0266 (4) | |
H10 | 0.9039 | 1.1597 | 0.1021 | 0.032* | |
H1N | 0.175 (3) | 0.6098 (17) | 0.0598 (16) | 0.048 (5)* | |
H2N | 0.323 (3) | 0.7036 (15) | 0.0534 (16) | 0.044 (5)* | |
H3N | 0.729 (3) | 0.8341 (16) | 0.1097 (16) | 0.045 (5)* | |
H4N | 0.860 (3) | 1.1143 (18) | 0.2961 (19) | 0.060 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0297 (6) | 0.0203 (5) | 0.0205 (5) | −0.0014 (4) | 0.0109 (4) | 0.0007 (4) |
O2 | 0.0344 (6) | 0.0186 (5) | 0.0202 (5) | −0.0044 (4) | 0.0076 (4) | −0.0017 (4) |
N1 | 0.0300 (8) | 0.0252 (7) | 0.0200 (6) | −0.0044 (6) | 0.0085 (5) | −0.0036 (5) |
N2 | 0.0290 (7) | 0.0209 (6) | 0.0257 (6) | −0.0012 (5) | 0.0103 (5) | −0.0042 (5) |
N3 | 0.0257 (7) | 0.0216 (6) | 0.0233 (6) | −0.0008 (5) | 0.0083 (5) | −0.0044 (5) |
C1 | 0.0210 (7) | 0.0198 (7) | 0.0188 (6) | 0.0031 (6) | 0.0041 (5) | 0.0016 (5) |
C2 | 0.0213 (7) | 0.0176 (7) | 0.0167 (6) | 0.0013 (5) | 0.0042 (5) | 0.0011 (5) |
C3 | 0.0252 (8) | 0.0194 (7) | 0.0209 (6) | −0.0029 (6) | 0.0063 (6) | −0.0002 (5) |
C4 | 0.0260 (8) | 0.0225 (7) | 0.0199 (6) | −0.0033 (6) | 0.0095 (5) | 0.0018 (5) |
C5 | 0.0215 (7) | 0.0214 (7) | 0.0178 (6) | 0.0029 (6) | 0.0033 (5) | 0.0004 (5) |
C6 | 0.0216 (7) | 0.0186 (7) | 0.0222 (6) | −0.0026 (6) | 0.0038 (5) | −0.0010 (5) |
C7 | 0.0208 (7) | 0.0197 (7) | 0.0215 (7) | −0.0009 (6) | 0.0066 (5) | 0.0021 (5) |
C8 | 0.0272 (8) | 0.0217 (7) | 0.0231 (7) | 0.0020 (6) | 0.0076 (6) | −0.0020 (5) |
C9 | 0.0305 (8) | 0.0281 (8) | 0.0247 (7) | −0.0031 (6) | 0.0122 (6) | −0.0021 (6) |
C10 | 0.0308 (8) | 0.0244 (8) | 0.0269 (7) | −0.0005 (6) | 0.0118 (6) | 0.0021 (6) |
O1—C1 | 1.2987 (16) | C2—C7 | 1.3964 (18) |
O2—C1 | 1.2368 (16) | C3—C4 | 1.3825 (18) |
N1—C5 | 1.3858 (17) | C3—H3 | 0.9500 |
N1—H1N | 0.94 (2) | C4—C5 | 1.4016 (19) |
N1—H2N | 0.89 (2) | C4—H4 | 0.9500 |
N2—C8 | 1.3281 (17) | C5—C6 | 1.397 (2) |
N2—C9 | 1.3745 (19) | C6—C7 | 1.3850 (18) |
N2—H3N | 0.956 (19) | C6—H6 | 0.9500 |
N3—C8 | 1.3200 (19) | C7—H7 | 0.9500 |
N3—C10 | 1.3794 (18) | C8—H8 | 0.9500 |
N3—H4N | 0.93 (2) | C9—C10 | 1.349 (2) |
C1—C2 | 1.4996 (18) | C9—H9 | 0.9500 |
C2—C3 | 1.3900 (19) | C10—H10 | 0.9500 |
C5—N1—H1N | 114.3 (12) | C5—C4—H4 | 119.7 |
C5—N1—H2N | 113.1 (12) | N1—C5—C6 | 121.89 (13) |
H1N—N1—H2N | 115.1 (18) | N1—C5—C4 | 119.88 (13) |
C8—N2—C9 | 108.10 (12) | C6—C5—C4 | 118.19 (12) |
C8—N2—H3N | 125.2 (12) | C7—C6—C5 | 120.69 (12) |
C9—N2—H3N | 126.6 (12) | C7—C6—H6 | 119.7 |
C8—N3—C10 | 108.23 (12) | C5—C6—H6 | 119.7 |
C8—N3—H4N | 125.5 (13) | C6—C7—C2 | 121.02 (13) |
C10—N3—H4N | 125.7 (13) | C6—C7—H7 | 119.5 |
O2—C1—O1 | 123.37 (12) | C2—C7—H7 | 119.5 |
O2—C1—C2 | 119.86 (12) | N3—C8—N2 | 109.39 (13) |
O1—C1—C2 | 116.77 (12) | N3—C8—H8 | 125.3 |
C3—C2—C7 | 118.20 (12) | N2—C8—H8 | 125.3 |
C3—C2—C1 | 119.96 (12) | C10—C9—N2 | 107.24 (13) |
C7—C2—C1 | 121.83 (12) | C10—C9—H9 | 126.4 |
C4—C3—C2 | 121.20 (13) | N2—C9—H9 | 126.4 |
C4—C3—H3 | 119.4 | C9—C10—N3 | 107.04 (13) |
C2—C3—H3 | 119.4 | C9—C10—H10 | 126.5 |
C3—C4—C5 | 120.68 (13) | N3—C10—H10 | 126.5 |
C3—C4—H4 | 119.7 | ||
O2—C1—C2—C3 | 12.6 (2) | C4—C5—C6—C7 | −1.1 (2) |
O1—C1—C2—C3 | −167.05 (12) | C5—C6—C7—C2 | 0.5 (2) |
O2—C1—C2—C7 | −166.47 (12) | C3—C2—C7—C6 | 0.2 (2) |
O1—C1—C2—C7 | 13.89 (18) | C1—C2—C7—C6 | 179.26 (12) |
C7—C2—C3—C4 | −0.2 (2) | C10—N3—C8—N2 | 0.15 (16) |
C1—C2—C3—C4 | −179.26 (12) | C9—N2—C8—N3 | −0.43 (16) |
C2—C3—C4—C5 | −0.5 (2) | C8—N2—C9—C10 | 0.55 (17) |
C3—C4—C5—N1 | 178.96 (13) | N2—C9—C10—N3 | −0.45 (17) |
C3—C4—C5—C6 | 1.1 (2) | C8—N3—C10—C9 | 0.19 (16) |
N1—C5—C6—C7 | −178.90 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H4N···O1i | 0.93 (2) | 1.76 (2) | 2.6869 (15) | 171 (2) |
N2—H3N···O1ii | 0.956 (19) | 1.742 (19) | 2.6938 (15) | 173.5 (19) |
N1—H1N···O2iii | 0.94 (2) | 2.17 (2) | 2.9495 (16) | 139.3 (17) |
N1—H2N···O1ii | 0.89 (2) | 2.20 (2) | 3.0149 (17) | 152.0 (16) |
C6—H6···O2iv | 0.95 | 2.55 | 3.3533 (16) | 142 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C3H5N2+·C7H6NO2− |
Mr | 205.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 123 |
a, b, c (Å) | 7.2038 (5), 11.6812 (6), 12.0152 (6) |
β (°) | 105.223 (6) |
V (Å3) | 975.59 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.20 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini S diffractometer |
Absorption correction | Multi-scan (CrysAlis CCD; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.945, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8533, 2360, 1700 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.115, 1.02 |
No. of reflections | 2360 |
No. of parameters | 153 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.36 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H4N···O1i | 0.93 (2) | 1.76 (2) | 2.6869 (15) | 171 (2) |
N2—H3N···O1ii | 0.956 (19) | 1.742 (19) | 2.6938 (15) | 173.5 (19) |
N1—H1N···O2iii | 0.94 (2) | 2.17 (2) | 2.9495 (16) | 139.3 (17) |
N1—H2N···O1ii | 0.89 (2) | 2.20 (2) | 3.0149 (17) | 152.0 (16) |
C6—H6···O2iv | 0.95 | 2.55 | 3.3533 (16) | 142 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also wishes to thank the Universidad del Valle, Colombia, and Instituto de Química de São Carlos, Brazil for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kopanska, K., Najda, A., Justyna, Z., Chomicz, L., Piekarczyk, J., Myja, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624. Web of Science PubMed CAS Google Scholar
Lai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885–893. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McMullan, R. K., Epstein, J., Ruble, J. R. & Craven, B. M. (1979). Acta Cryst. B35, 688–691. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Moreno-Fuquen, R., De Almeida Santos, R. H. & Lechat, J. R. (1996). Acta Cryst. C52, 220–222. CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009). Acta Cryst. E65, o2717. Web of Science CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662. London: Pergamon. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sondhi, S. M., Rajvanshi, S., Johar, M., Bharti, N., Azam, A. & Singh, A. K. (2002). Eur. J. Med. Chem. 37, 835–843. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title adduct, C7H6NO2-, C3H5N2+ (imidazolium 4-aminobenzoate), (I), is part of a series of studies on imidazole, which have been made in our research group (Moreno-Fuquen et al., 2009). Imidazole derivatives have a wide variety of agents holding biological activities and is used in the field of pharmaceuticals and medicine like antimicrobial and antiprotozoal (Kopanska et al., 2004) or anti-inflammatory agents (Sondhi et al., 2002). In turn, 4-Aminobenzoic acid (PABA) (Lai & Marsh, 1967) is an important biological molecule, involving the synthesis of folic acid (Robinson, 1966) and promoting the extension of hydrogen-bonded network structures. To continue research on the structural behavior of the imidazole molecule with different hydrogen bond donors, the system imidazolium 4-aminobenzoate adduct (I), is reported. The 4-aminobenzoic acid and 4-nitropyridine N-oxide (PABA+NPNO) molecular complex (Moreno-Fuquen et al., 1996) and the PABA and imidazole (IM) free molecules (McMullan et al., 1979) may be used as reference systems in order to compare to the title imidazolium salt. The molecular structure of (I) is shown in Fig. 1. The title compound shows a dihedral angle of 23.71 (8)°, between benzene and imidazole planes. In turn, the carboxylate group of 4-aminobenzoate shows a dihedral angle of 13.23 (17)° with respect to the benzene ring, following the same structural behavior of the group in the free PABA molecule and in the PABA+NPNO adduct. The (PABA), as well as other organic acids, shows the formation of centrosymmetric hydrogen-bonded dimers in its structure. As a product of the reaction with imidazole (IM), the dimer in the PABA molecule is broken, and begins the transference of the proton to the basic N-atom of the IM molecule forming the title adduct. Some structural changes in the formation of the imidazolium salt, are observed: N2—C8 bond length changes from 1.358 in the free IM molecule, to 1.3281 (17) Å in (I); C1—O1 and C6—C7 bond lengths change from 1.210 (4) and 1.366 (5) Å in the (PABA +NPNO) adduct to 1.2368 (16) and 1.3850 (18) Å in the title adduct. The other bond lengths and bond angles of (I) are in good agreement with the standard values and correspond to those observed in the IM free molecule and (PABA+NPNO) reference systems. The formation of the salt, resulting in N—H···O hydrogen-bonding interactions and C—H···O intermolecular weak contacts with carboxylate O-atoms acceptors: The two components of the adduct are connected via intermolecular N—H···O hydrogen bonds and C—H···O weak contacts, (Table 1) (Nardelli, 1995) and these interactions define an infinite three dimensional framework. In a first substructure, the strongest hydrogen bonds N—H···O interactions are responsible for crystal growth. Indeed, there are two intermolecular N—H···O hydrogen bond interactions which link one molecule of PABA and 2 molecules of IM. A third N—H···O hydrogen bond links two PABA molecules. All these interactions link the moieties into molecular sheets that extend in the b and c directions forming R56(30) (Etter, 1990) edge-fused rings (Fig. 2). In a second substructure, the PABA molecules are linked by N—H···O hydrogen-bonding and intermolecular C—H···O weak interactions which form a R44(22) e dge-fused rings along a and c directions (Fig 3). All of these interactions define the bulk structure of the crystal.