organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Methyl-N-[4-(methyl­sulfon­yl)benzyl­­idene]aniline

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China, and bSchool of Chemical Engineering, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 1 November 2009; accepted 9 November 2009; online 14 November 2009)

Mol­ecules of the title compound, C15H15NO2S, display an E configuration with respect to the C=N double bond. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds. The dihedral angle between the two aromatic ring planes is 50.41 (12)°.

Related literature

For background to Schiff base compounds in coordination chemistry, see: Shao et al. (2004[Shao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183-o2184.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2S

  • Mr = 273.34

  • Monoclinic, P 21 /c

  • a = 11.445 (2) Å

  • b = 7.8770 (16) Å

  • c = 16.132 (3) Å

  • β = 98.65 (3)°

  • V = 1437.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.957

  • 2745 measured reflections

  • 2607 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.151

  • S = 1.00

  • 2607 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.55 3.274 (3) 135
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Schiff base compounds have attracted attention for the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular archtectures(Shao et al., 2004). As an extension of work on the structural characterization of Schiff base compounds, the crystal structure of the title compound(I), Figure 1, is reported here. The molecule displays a trans-configuration with respect to the C=N double bond. the crystal structure is stabilized by weak C—H···O hydrogen bonds(Figure 2). The dihedral angle between two aromatic ring planes is 50.41 (12)°.

Related literature top

For background to Schiff base compounds in coordination chemistry, see: Shao et al. (2004).

Experimental top

4-(methylsulfonyl)benzaldehyde (0.184g) and o-toluidine (0.107g) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After keeping the solution in air for 10 d, yellow block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All the H atoms attached to C atoms were placed in geometrical positions and constrained to ride on their parent atoms with C-H distance in the range 0.93-0.98 Å, They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
(E)-2-Methyl-N-[4-(methylsulfonyl)benzylidene]aniline top
Crystal data top
C15H15NO2SF(000) = 576
Mr = 273.34Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.445 (2) Åθ = 9–14°
b = 7.8770 (16) ŵ = 0.22 mm1
c = 16.132 (3) ÅT = 293 K
β = 98.65 (3)°Block, yellow
V = 1437.8 (5) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 013
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 09
Tmin = 0.936, Tmax = 0.957l = 1919
2745 measured reflections3 standard reflections every 200 reflections
2607 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.1P)2 + 0.09P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2607 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (5)
Crystal data top
C15H15NO2SV = 1437.8 (5) Å3
Mr = 273.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.445 (2) ŵ = 0.22 mm1
b = 7.8770 (16) ÅT = 293 K
c = 16.132 (3) Å0.30 × 0.20 × 0.20 mm
β = 98.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1898 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.026
Tmin = 0.936, Tmax = 0.9573 standard reflections every 200 reflections
2745 measured reflections intensity decay: 1%
2607 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2607 reflectionsΔρmin = 0.24 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43428 (5)0.25210 (8)0.34889 (3)0.0539 (3)
N10.01690 (16)0.3139 (2)0.60356 (12)0.0527 (5)
O10.35995 (19)0.2305 (3)0.27085 (11)0.0941 (8)
C10.5014 (3)0.4515 (4)0.3496 (2)0.1056 (12)
H1B0.55210.45500.30740.158*
H1C0.54720.47150.40360.158*
H1D0.44170.53750.33830.158*
C20.3445 (2)0.2644 (3)0.42882 (13)0.0447 (5)
O20.52410 (16)0.1283 (3)0.37209 (12)0.0867 (7)
C30.38513 (18)0.1981 (3)0.50701 (13)0.0487 (5)
H3A0.46030.15070.51830.058*
C40.31293 (19)0.2031 (3)0.56824 (13)0.0503 (6)
H4A0.33970.15830.62100.060*
C50.20111 (19)0.2740 (3)0.55184 (13)0.0463 (5)
C60.1612 (2)0.3412 (3)0.47238 (14)0.0569 (6)
H6A0.08650.38980.46100.068*
C70.2329 (2)0.3353 (3)0.41107 (14)0.0569 (6)
H7A0.20640.37880.35800.068*
C80.12384 (19)0.2695 (3)0.61761 (14)0.0499 (6)
H8A0.15530.23280.67110.060*
C90.05118 (19)0.3031 (3)0.67002 (15)0.0504 (6)
C100.0096 (2)0.3600 (3)0.75031 (16)0.0617 (6)
H10A0.06590.40570.76230.074*
C110.0797 (3)0.3492 (4)0.81250 (18)0.0807 (9)
H11A0.05110.38650.86640.097*
C120.1918 (3)0.2837 (4)0.7949 (2)0.0881 (10)
H12A0.23920.27640.83670.106*
C130.2333 (2)0.2291 (4)0.7156 (2)0.0805 (9)
H13A0.30900.18330.70470.097*
C140.1664 (2)0.2396 (3)0.65064 (18)0.0613 (7)
C150.2132 (3)0.1814 (4)0.5632 (2)0.0894 (9)
H15A0.29310.14280.56110.134*
H15B0.16520.09010.54780.134*
H15C0.21110.27410.52480.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0647 (4)0.0564 (4)0.0429 (4)0.0082 (3)0.0156 (3)0.0032 (2)
N10.0492 (11)0.0500 (11)0.0603 (12)0.0039 (9)0.0122 (9)0.0041 (9)
O10.0922 (14)0.147 (2)0.0427 (10)0.0062 (13)0.0097 (10)0.0103 (11)
C10.122 (3)0.078 (2)0.135 (3)0.0203 (19)0.078 (2)0.001 (2)
C20.0524 (12)0.0402 (11)0.0421 (11)0.0007 (9)0.0093 (9)0.0013 (9)
O20.0940 (13)0.0980 (16)0.0764 (12)0.0453 (12)0.0395 (11)0.0257 (11)
C30.0436 (11)0.0587 (13)0.0426 (11)0.0065 (10)0.0019 (9)0.0034 (10)
C40.0516 (13)0.0598 (14)0.0382 (11)0.0046 (10)0.0027 (9)0.0003 (10)
C50.0489 (12)0.0460 (13)0.0444 (11)0.0005 (9)0.0078 (9)0.0020 (9)
C60.0546 (13)0.0590 (15)0.0575 (13)0.0161 (11)0.0097 (11)0.0139 (11)
C70.0635 (14)0.0605 (15)0.0470 (12)0.0131 (12)0.0099 (11)0.0144 (11)
C80.0501 (13)0.0504 (13)0.0490 (12)0.0003 (10)0.0069 (10)0.0014 (10)
C90.0466 (12)0.0421 (11)0.0642 (14)0.0031 (9)0.0140 (10)0.0026 (10)
C100.0569 (13)0.0595 (15)0.0708 (15)0.0010 (12)0.0159 (11)0.0064 (12)
C110.087 (2)0.085 (2)0.0760 (19)0.0097 (17)0.0301 (15)0.0102 (15)
C120.082 (2)0.096 (2)0.098 (2)0.0081 (18)0.0495 (19)0.0055 (19)
C130.0546 (16)0.0719 (19)0.121 (3)0.0029 (13)0.0317 (17)0.0098 (18)
C140.0500 (13)0.0496 (14)0.0848 (18)0.0007 (11)0.0124 (12)0.0043 (12)
C150.0661 (17)0.091 (2)0.106 (2)0.0196 (16)0.0010 (16)0.0162 (19)
Geometric parameters (Å, º) top
S1—O11.420 (2)C6—H6A0.9300
S1—O21.4257 (18)C7—H7A0.9300
S1—C11.747 (3)C8—H8A0.9300
S1—C21.768 (2)C9—C101.385 (3)
N1—C81.260 (3)C9—C141.401 (3)
N1—C91.420 (3)C10—C111.378 (3)
C1—H1B0.9600C10—H10A0.9300
C1—H1C0.9600C11—C121.372 (4)
C1—H1D0.9600C11—H11A0.9300
C2—C31.380 (3)C12—C131.364 (5)
C2—C71.384 (3)C12—H12A0.9300
C3—C41.380 (3)C13—C141.391 (4)
C3—H3A0.9300C13—H13A0.9300
C4—C51.385 (3)C14—C151.503 (4)
C4—H4A0.9300C15—H15A0.9600
C5—C61.398 (3)C15—H15B0.9600
C5—C81.480 (3)C15—H15C0.9600
C6—C71.377 (3)
O1—S1—O2117.58 (13)C6—C7—H7A120.1
O1—S1—C1108.53 (17)C2—C7—H7A120.1
O2—S1—C1108.33 (16)N1—C8—C5122.2 (2)
O1—S1—C2108.46 (12)N1—C8—H8A118.9
O2—S1—C2108.73 (10)C5—C8—H8A118.9
C1—S1—C2104.42 (12)C10—C9—C14120.2 (2)
C8—N1—C9118.4 (2)C10—C9—N1122.4 (2)
S1—C1—H1B109.5C14—C9—N1117.3 (2)
S1—C1—H1C109.5C11—C10—C9120.3 (2)
H1B—C1—H1C109.5C11—C10—H10A119.8
S1—C1—H1D109.5C9—C10—H10A119.8
H1B—C1—H1D109.5C12—C11—C10120.0 (3)
H1C—C1—H1D109.5C12—C11—H11A120.0
C3—C2—C7121.0 (2)C10—C11—H11A120.0
C3—C2—S1119.54 (17)C13—C12—C11119.7 (3)
C7—C2—S1119.39 (16)C13—C12—H12A120.1
C2—C3—C4119.2 (2)C11—C12—H12A120.1
C2—C3—H3A120.4C12—C13—C14122.2 (3)
C4—C3—H3A120.4C12—C13—H13A118.9
C3—C4—C5120.7 (2)C14—C13—H13A118.9
C3—C4—H4A119.7C13—C14—C9117.4 (3)
C5—C4—H4A119.7C13—C14—C15122.0 (3)
C4—C5—C6119.5 (2)C9—C14—C15120.6 (2)
C4—C5—C8119.21 (19)C14—C15—H15A109.5
C6—C5—C8121.2 (2)C14—C15—H15B109.5
C7—C6—C5119.9 (2)H15A—C15—H15B109.5
C7—C6—H6A120.1C14—C15—H15C109.5
C5—C6—H6A120.1H15A—C15—H15C109.5
C6—C7—C2119.7 (2)H15B—C15—H15C109.5
O1—S1—C2—C3145.99 (19)C9—N1—C8—C5179.03 (19)
O2—S1—C2—C317.0 (2)C4—C5—C8—N1171.7 (2)
C1—S1—C2—C398.4 (2)C6—C5—C8—N15.3 (3)
O1—S1—C2—C731.9 (2)C8—N1—C9—C1045.4 (3)
O2—S1—C2—C7160.84 (19)C8—N1—C9—C14137.8 (2)
C1—S1—C2—C783.7 (2)C14—C9—C10—C112.2 (4)
C7—C2—C3—C40.0 (3)N1—C9—C10—C11179.0 (2)
S1—C2—C3—C4177.84 (16)C9—C10—C11—C120.7 (4)
C2—C3—C4—C50.2 (3)C10—C11—C12—C130.1 (5)
C3—C4—C5—C60.0 (3)C11—C12—C13—C141.0 (5)
C3—C4—C5—C8177.0 (2)C12—C13—C14—C92.4 (4)
C4—C5—C6—C70.5 (4)C12—C13—C14—C15179.1 (3)
C8—C5—C6—C7176.5 (2)C10—C9—C14—C133.0 (3)
C5—C6—C7—C20.7 (4)N1—C9—C14—C13179.9 (2)
C3—C2—C7—C60.4 (4)C10—C9—C14—C15178.5 (2)
S1—C2—C7—C6178.29 (19)N1—C9—C14—C151.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.553.274 (3)135
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO2S
Mr273.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.445 (2), 7.8770 (16), 16.132 (3)
β (°) 98.65 (3)
V3)1437.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
2745, 2607, 1898
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.151, 1.00
No. of reflections2607
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.553.274 (3)135
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This project was sponsored by ShanDong province Science & Technology Innovation Foundation.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationShao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183–o2184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds