organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6,7,8-Tetra­hydro­naphthalene-1-carboxylic acid

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com

(Received 3 November 2009; accepted 20 November 2009; online 28 November 2009)

In the mol­ecule of the title compound, C11H12O2, the cyclo­hexane ring adopts a half-chair conformation. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds, and the dimers are linked together by ππ inter­actions [centroid–centroid distance = 3.8310 (13) Å] and C—H⋯O bonds.

Related literature

The title compoundis an inter­mediate in the synthesis of Palonosetron, a 5-HT3 receptor antagonist, see: Kowalczyk & Dvorak (1996[Kowalczyk, B. A. & Dvorak, C. A. (1996). Synthesis, 7, 816-818.]); Lancelot et al. (1985[Lancelot, J. C., Rault, S., Laduree, D. & Robba, M. (1985). Chem. Pharm. Bull. 37, 2798-2802.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O2

  • Mr = 176.21

  • Triclinic, [P \overline 1]

  • a = 7.477 (2) Å

  • b = 7.664 (2) Å

  • c = 8.546 (2) Å

  • α = 68.390 (10)°

  • β = 80.666 (12)°

  • γ = 75.977 (10)°

  • V = 440.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.27 × 0.23 × 0.12 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.989

  • 4408 measured reflections

  • 1994 independent reflections

  • 1429 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 0.97

  • 1994 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10⋯O2i 0.84 1.80 2.6338 (15) 175
C8—H8⋯O2ii 0.95 2.58 3.509 (2) 165
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is useful as an intermediate in the synthesis of Palonosetron, a 5-HT3 receptor antagonists (Kowalczyk et al., 1996; Lancelot et al., 1985). We report here the crystal structure of (I), which is of interest to us in the field. The molecular structure is shown in Fig.1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The cyclohexane ring adopts a half chair conformation, with C3 lying out of the plane of the molecule by approximately 0.5 Å. In the crystal structure, intermolecular O—H···O hydrogen bonds (Tab. 1) link the molecules into centrosymmetric dimers(Fig. 2). Stacking of these dimers follows the π-π interactions, with the centroid-centroid distance of 3.8310 (13)Å [symmetry code(i): 1 - x, 1 - y, 1 - z].

Related literature top

The title compoundis an intermediate in the synthesis of Palonosetron, a 5-HT3 receptor antagonist, see: Kowalczyk & Dvorak (1996); Lancelot et al. (1985). For bond-length data, see: Allen et al. (1987) [PLEASE PROVIDE A SCHEME]

Experimental top

A sample of commercial 5,6,7,8-Tetrahydronaphthalene-1-carboxylic acid (Aldrich) was crystalized by slow evaporation of a solution in methanol.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H=0.95 and 0.99 Å for aromatic and methylene and with Uiso(H) = 1.2Ueq(aromatic,methylene) parent atoms. H atom of the carboxyl group was derived from Fourier map, and constrained to ride on the parent atom with O—H=0.84 Å and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram viewed along the a axis. Hydrogen bridging bonds are drawn as dashed lines.
5,6,7,8-Tetrahydronaphthalene-1-carboxylic acid top
Crystal data top
C11H12O2Z = 2
Mr = 176.21F(000) = 188
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.477 (2) ÅCell parameters from 1274 reflections
b = 7.664 (2) Åθ = 3.2–27.5°
c = 8.546 (2) ŵ = 0.09 mm1
α = 68.39 (1)°T = 93 K
β = 80.666 (12)°Block, colorless
γ = 75.977 (10)°0.27 × 0.23 × 0.12 mm
V = 440.3 (2) Å3
Data collection top
Rigaku SPIDER
diffractometer
1994 independent reflections
Radiation source: fine-focus sealed tube1429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: ψ scan
(North et al., 1968)
h = 99
Tmin = 0.976, Tmax = 0.989k = 99
4408 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: geom and difmap
wR(F2) = 0.106H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
1994 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H12O2γ = 75.977 (10)°
Mr = 176.21V = 440.3 (2) Å3
Triclinic, P1Z = 2
a = 7.477 (2) ÅMo Kα radiation
b = 7.664 (2) ŵ = 0.09 mm1
c = 8.546 (2) ÅT = 93 K
α = 68.39 (1)°0.27 × 0.23 × 0.12 mm
β = 80.666 (12)°
Data collection top
Rigaku SPIDER
diffractometer
1994 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1429 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.026
4408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.97Δρmax = 0.38 e Å3
1994 reflectionsΔρmin = 0.17 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92438 (13)0.25317 (11)0.46074 (12)0.0193 (3)
H101.00510.16910.43430.029*
O20.81137 (13)0.00378 (12)0.63071 (12)0.0213 (3)
C10.49946 (18)0.26317 (17)0.73643 (16)0.0151 (3)
C20.43087 (18)0.09079 (18)0.73976 (17)0.0181 (3)
H2A0.48960.02450.82900.022*
H2B0.46910.07070.63020.022*
C30.22129 (19)0.11404 (19)0.77249 (18)0.0214 (3)
H3A0.16170.21400.67360.026*
H3B0.18490.00780.78890.026*
C40.15578 (19)0.17011 (19)0.92902 (17)0.0220 (3)
H4A0.02120.17440.95500.026*
H4B0.21990.07361.02700.026*
C50.19689 (19)0.36544 (19)0.89793 (18)0.0214 (3)
H5A0.10200.46520.82850.026*
H5B0.18640.38471.00770.026*
C60.38656 (18)0.39253 (18)0.81011 (16)0.0173 (3)
C70.4472 (2)0.55486 (18)0.80077 (17)0.0198 (3)
H70.37010.64090.85180.024*
C80.61567 (19)0.59422 (18)0.71966 (17)0.0206 (3)
H80.65350.70620.71410.025*
C90.72881 (19)0.46801 (18)0.64642 (17)0.0182 (3)
H90.84490.49370.58990.022*
C100.67299 (18)0.30349 (17)0.65533 (16)0.0153 (3)
C110.80592 (18)0.16973 (18)0.58206 (16)0.0163 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (5)0.0170 (5)0.0231 (5)0.0046 (4)0.0068 (4)0.0076 (4)
O20.0205 (5)0.0159 (5)0.0274 (6)0.0060 (4)0.0067 (4)0.0092 (4)
C10.0155 (7)0.0148 (6)0.0146 (6)0.0036 (5)0.0024 (5)0.0038 (5)
C20.0161 (7)0.0184 (7)0.0203 (7)0.0059 (5)0.0016 (6)0.0072 (6)
C30.0171 (7)0.0214 (7)0.0264 (8)0.0080 (5)0.0002 (6)0.0071 (6)
C40.0155 (7)0.0235 (7)0.0236 (8)0.0062 (6)0.0029 (6)0.0047 (6)
C50.0167 (7)0.0240 (7)0.0229 (7)0.0035 (5)0.0040 (6)0.0099 (6)
C60.0162 (7)0.0182 (7)0.0159 (7)0.0025 (5)0.0002 (5)0.0050 (5)
C70.0208 (7)0.0171 (7)0.0207 (7)0.0008 (5)0.0002 (6)0.0085 (6)
C80.0238 (8)0.0159 (7)0.0244 (8)0.0060 (5)0.0015 (6)0.0083 (6)
C90.0151 (7)0.0190 (7)0.0191 (7)0.0060 (5)0.0007 (6)0.0044 (5)
C100.0158 (7)0.0147 (6)0.0147 (6)0.0026 (5)0.0008 (5)0.0047 (5)
C110.0140 (7)0.0200 (7)0.0165 (7)0.0060 (5)0.0003 (5)0.0067 (5)
Geometric parameters (Å, º) top
O1—C111.3254 (14)C4—H4A0.9900
O1—H100.8400C4—H4B0.9900
O2—C111.2307 (15)C5—C61.5166 (18)
C1—C61.4049 (17)C5—H5A0.9900
C1—C101.4157 (18)C5—H5B0.9900
C1—C21.5182 (17)C6—C71.3956 (18)
C2—C31.5247 (19)C7—C81.3804 (19)
C2—H2A0.9900C7—H70.9500
C2—H2B0.9900C8—C91.3859 (18)
C3—C41.5242 (19)C8—H80.9500
C3—H3A0.9900C9—C101.3941 (18)
C3—H3B0.9900C9—H90.9500
C4—C51.5196 (18)C10—C111.4860 (18)
C11—O1—H10109.5C6—C5—H5A108.7
C6—C1—C10117.91 (12)C4—C5—H5A108.7
C6—C1—C2119.92 (12)C6—C5—H5B108.7
C10—C1—C2122.13 (11)C4—C5—H5B108.7
C1—C2—C3112.64 (10)H5A—C5—H5B107.6
C1—C2—H2A109.1C7—C6—C1119.70 (12)
C3—C2—H2A109.1C7—C6—C5117.82 (11)
C1—C2—H2B109.1C1—C6—C5122.47 (12)
C3—C2—H2B109.1C8—C7—C6122.00 (12)
H2A—C2—H2B107.8C8—C7—H7119.0
C4—C3—C2110.24 (12)C6—C7—H7119.0
C4—C3—H3A109.6C7—C8—C9119.04 (12)
C2—C3—H3A109.6C7—C8—H8120.5
C4—C3—H3B109.6C9—C8—H8120.5
C2—C3—H3B109.6C8—C9—C10120.29 (12)
H3A—C3—H3B108.1C8—C9—H9119.9
C5—C4—C3109.55 (11)C10—C9—H9119.9
C5—C4—H4A109.8C9—C10—C1121.05 (11)
C3—C4—H4A109.8C9—C10—C11117.19 (12)
C5—C4—H4B109.8C1—C10—C11121.71 (11)
C3—C4—H4B109.8O2—C11—O1122.06 (11)
H4A—C4—H4B108.2O2—C11—C10124.11 (11)
C6—C5—C4114.16 (11)O1—C11—C10113.80 (11)
C6—C1—C2—C319.10 (17)C6—C7—C8—C90.5 (2)
C10—C1—C2—C3158.53 (13)C7—C8—C9—C100.2 (2)
C1—C2—C3—C451.66 (15)C8—C9—C10—C11.0 (2)
C2—C3—C4—C564.12 (14)C8—C9—C10—C11176.76 (12)
C3—C4—C5—C643.06 (16)C6—C1—C10—C91.0 (2)
C10—C1—C6—C70.30 (19)C2—C1—C10—C9176.64 (12)
C2—C1—C6—C7177.43 (12)C6—C1—C10—C11176.63 (12)
C10—C1—C6—C5179.06 (12)C2—C1—C10—C115.7 (2)
C2—C1—C6—C51.3 (2)C9—C10—C11—O2151.98 (13)
C4—C5—C6—C7170.00 (12)C1—C10—C11—O225.8 (2)
C4—C5—C6—C111.22 (19)C9—C10—C11—O126.09 (18)
C1—C6—C7—C80.5 (2)C1—C10—C11—O1156.15 (12)
C5—C6—C7—C8178.34 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10···O2i0.841.802.6338 (15)175
C2—H2B···O20.992.482.8506 (19)101
C8—H8···O2ii0.952.583.509 (2)165
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H12O2
Mr176.21
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)7.477 (2), 7.664 (2), 8.546 (2)
α, β, γ (°)68.39 (1), 80.666 (12), 75.977 (10)
V3)440.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.23 × 0.12
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4408, 1994, 1429
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 0.97
No. of reflections1994
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.17

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10···O2i0.84001.80002.6338 (15)175.00
C2—H2B···O20.99002.48002.8506 (19)101.00
C8—H8···O2ii0.95002.58003.509 (2)165.00
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationKowalczyk, B. A. & Dvorak, C. A. (1996). Synthesis, 7, 816–818.  CrossRef Google Scholar
First citationLancelot, J. C., Rault, S., Laduree, D. & Robba, M. (1985). Chem. Pharm. Bull. 37, 2798–2802.  CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds