metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1685-m1686

Bis[μ-4,4′,6,6′-tetra­chloro-2,2′-(piperazine-1,4-diyldi­methyl­ene)diphenolato]dicopper(II)

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

(Received 5 November 2009; accepted 20 November 2009; online 28 November 2009)

In the centrosymmetric dinuclear CuII title complex, [Cu2(C18H16Cl4N2O2)2], the CuII atom adopts a square-pyramidal geometry with a tetra­dentate ligand in the basal plane. The apical site is occupied by a phenolate O atom from an adjacent ligand, forming a dimer. The mol­ecular structure is stabilized by intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For the synthesis and the monoclinic and ortho­rhom­bic polymorphs of a tetra­chloro-2,2′-(piperazine-1,4-diyldi­methyl­ene)diphenol, see: Kubono & Yokoi (2007[Kubono, K. & Yokoi, K. (2007). Acta Cryst. C63, o535-o537.]). For related stuctures, see: Butcher et al. (2007[Butcher, R. J., Pourian, M. & Jasinski, J. P. (2007). Acta Cryst. E63, m1913-m1914.]); Kubono et al. (2003[Kubono, K., Hirayama, N., Kokusen, H. & Yokoi, K. (2003). Anal. Sci. 19, 645-646.]); Massoud & Mautner (2004[Massoud, S. S. & Mautner, F. A. (2004). Inorg. Chem. Commun. 7, 559-562.]); Weinberger et al. (2000[Weinberger, P., Costisor, O., Tudose, R., Baumgartner, O. & Linert, W. (2000). J. Mol. Struct. 519, 21-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C18H16Cl4N2O2)2]

  • Mr = 995.36

  • Monoclinic, C 2/c

  • a = 20.1772 (18) Å

  • b = 15.3901 (18) Å

  • c = 15.1397 (14) Å

  • β = 121.140 (6)°

  • V = 4023.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 296 K

  • 0.20 × 0.08 × 0.07 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.855, Tmax = 0.892

  • 4759 measured reflections

  • 4634 independent reflections

  • 2574 reflections with I > 2σ(I)

  • Rint = 0.046

  • 3 standard reflections every 150 reflections intensity decay: 0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 0.99

  • 4634 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.913 (2)
Cu1—O2 1.955 (2)
Cu1—O2i 2.381 (3)
Cu1—N1 2.026 (4)
Cu1—N2 2.033 (3)
O1—Cu1—O2 97.69 (11)
O1—Cu1—O2i 96.68 (12)
O1—Cu1—N1 93.97 (12)
O2—Cu1—O2i 85.84 (11)
O2—Cu1—N2 92.90 (12)
O2i—Cu1—N1 104.18 (13)
O2i—Cu1—N2 97.64 (12)
N1—Cu1—N2 73.22 (13)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H12⋯Cl4i 0.97 2.76 3.544 (5) 138
C12—H14⋯O1i 0.97 2.19 3.112 (6) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: WinAFC (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Recently, we have reported the crystal structure of tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenol, H2Cl2bpi (Kubono & Yokoi, 2007). As a continuation of this work on the structural characterization of piperazinediphenol compounds, the title dinuclear CuII complex (Fig. 1) is reported here. The CuII atom has a square-pyramidal coordination geometry with the basal plane comprised of two phenolate O and two tertiary alkyl N atoms from a piperazinediphenol ligand. The apical site is occupied by a phenolate O atom from an adjacent ligand generated by inversion operation, building a centrosymmetric dimer. The Cu···Cu distance within the dimer is 3.1883 (10) Å. The dihedral angle between the benzene rings (C1–C6 and C13–C18) is 87.96 (16) °. The coordination bond lengths and angles (Table 1) are comparable to those observed in related complexes (Butcher et al., 2007; Kubono et al., 2003; Massoud et al., 2004; Weinberger et al., 2000). The molecular structure complex is stabilized by intramolecular C—H···O and C—H···Cl hydrogen bonds (Table 2).

Related literature top

For the synthesis and the monoclinic and orthorhombic polymorphs of a tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenol, see: Kubono & Yokoi (2007). For related stuctures, see: Butcher et al. (2007); Kubono et al. (2003); Massoud et al. (2004); Weinberger et al. (2000).

Experimental top

H2Cl2bpi (0.109 g, 0.25 mmol) was dissolved in 30 ml hot chloroform. Then 30 ml of a methanol solution of copper acetate monohydrate (0.0499 g, 0.25 mmol) were added to this solution. The mixture was stirred for 20 min at 340 K. After a few days at room temperature, dark-green crystals of (I) were obtained. Yield 24.4%. Analysis calculated for C36H32Cl8Cu2N4O4: C 43.44, H 3.24, N 5.63%; found: C 43.05, H 3.22, N 5.53%.

Refinement top

All H atoms were placed at idealized positions and refined as a riding atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: WinAFC (Rigaku/MSC, 2006); cell refinement: WinAFC (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecule of the title complex showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Only the H atoms involved in the hydrogen bonds are represented by circles of arbitrary size. [Symmetry code: (i) 1/2 - x,1/2 - y,-z.]
Bis[µ-4,4',6,6'-tetrachloro-2,2'-(piperazine-1,4- diyldimethylene)diphenolato]dicopper(II) top
Crystal data top
[Cu2(C18H16Cl4N2O2)2]F(000) = 2008.00
Mr = 995.36Dx = 1.643 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 20.1772 (18) Åθ = 13.4–14.9°
b = 15.3901 (18) ŵ = 1.63 mm1
c = 15.1397 (14) ÅT = 296 K
β = 121.140 (6)°Column, dark-green
V = 4023.9 (7) Å30.20 × 0.08 × 0.07 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.046
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 026
Tmin = 0.855, Tmax = 0.892k = 019
4759 measured reflectionsl = 1916
4634 independent reflections3 standard reflections every 150 reflections
2574 reflections with I > 2σ(I) intensity decay: 0.7%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.37 e Å3
4634 reflectionsΔρmin = 0.39 e Å3
245 parameters
Crystal data top
[Cu2(C18H16Cl4N2O2)2]V = 4023.9 (7) Å3
Mr = 995.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.1772 (18) ŵ = 1.63 mm1
b = 15.3901 (18) ÅT = 296 K
c = 15.1397 (14) Å0.20 × 0.08 × 0.07 mm
β = 121.140 (6)°
Data collection top
Rigaku AFC-7R
diffractometer
2574 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.046
Tmin = 0.855, Tmax = 0.8923 standard reflections every 150 reflections
4759 measured reflections intensity decay: 0.7%
4634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041245 parameters
wR(F2) = 0.119H-atom parameters constrained
S = 0.99Δρmax = 0.37 e Å3
4634 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23572 (3)0.25394 (3)0.09411 (4)0.03688 (13)
Cl10.42437 (6)0.45428 (7)0.29614 (8)0.0506 (2)
Cl20.41605 (8)0.34818 (11)0.62836 (9)0.0812 (4)
Cl30.07156 (8)0.53920 (10)0.17092 (12)0.0863 (4)
Cl40.23821 (7)0.53026 (7)0.00693 (10)0.0645 (3)
O10.33424 (16)0.29710 (19)0.1996 (2)0.0490 (7)
O20.21681 (15)0.33844 (16)0.01288 (19)0.0391 (6)
N10.22348 (19)0.1741 (2)0.1911 (2)0.0421 (7)
N20.12414 (18)0.2118 (2)0.0166 (2)0.0381 (7)
C10.3513 (2)0.3070 (2)0.2952 (2)0.0384 (8)
C20.3933 (2)0.3796 (2)0.3535 (2)0.0356 (8)
C30.4129 (2)0.3920 (2)0.4540 (3)0.0427 (9)
C40.3895 (2)0.3322 (3)0.4996 (3)0.0497 (10)
C50.3496 (2)0.2591 (2)0.4474 (3)0.0498 (10)
C60.3311 (2)0.2455 (2)0.3472 (3)0.0421 (8)
C70.2937 (2)0.1606 (2)0.2929 (3)0.0494 (10)
C80.1593 (2)0.2145 (3)0.1957 (3)0.0550 (11)
C90.0965 (2)0.2379 (2)0.0862 (3)0.0498 (10)
C100.1323 (2)0.1156 (2)0.0214 (3)0.0493 (10)
C110.1958 (2)0.0924 (2)0.1308 (3)0.0509 (10)
C120.0751 (2)0.2445 (2)0.0894 (3)0.0440 (9)
C130.0784 (2)0.3422 (2)0.0909 (3)0.0435 (9)
C140.0111 (2)0.3904 (3)0.1272 (3)0.0548 (11)
C150.0140 (2)0.4794 (3)0.1254 (3)0.0582 (11)
C160.0832 (2)0.5220 (3)0.0846 (3)0.0588 (12)
C170.1506 (2)0.4743 (2)0.0473 (3)0.0474 (9)
C180.1510 (2)0.3828 (2)0.0497 (3)0.0393 (8)
H10.44170.44030.49070.051*
H20.33500.21850.47970.060*
H30.33080.12720.28440.059*
H40.28050.12710.33590.059*
H50.17720.26620.23830.066*
H60.13910.17430.22550.066*
H70.04880.20760.06750.060*
H80.08650.29990.08080.060*
H90.14620.09570.02770.059*
H100.08390.08840.00490.059*
H110.17560.05350.16180.061*
H120.23810.06340.13000.061*
H130.02210.22590.11680.053*
H140.09290.22060.13290.053*
H150.03610.36220.15290.066*
H160.08490.58240.08200.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0394 (2)0.0371 (2)0.0428 (2)0.0113 (2)0.0273 (2)0.0080 (2)
Cl10.0544 (6)0.0427 (5)0.0575 (6)0.0089 (4)0.0308 (5)0.0021 (4)
Cl20.0865 (9)0.1165 (12)0.0375 (6)0.0042 (8)0.0298 (6)0.0045 (7)
Cl30.0662 (8)0.0757 (9)0.0988 (11)0.0224 (7)0.0297 (7)0.0121 (8)
Cl40.0670 (7)0.0423 (6)0.0935 (9)0.0160 (5)0.0482 (7)0.0237 (6)
O10.0489 (16)0.0635 (19)0.0403 (15)0.0248 (14)0.0272 (13)0.0149 (14)
O20.0414 (14)0.0367 (14)0.0448 (15)0.0073 (12)0.0263 (12)0.0059 (12)
N10.0474 (19)0.0402 (19)0.0470 (19)0.0135 (14)0.0304 (16)0.0111 (15)
N20.0384 (17)0.0362 (16)0.0497 (19)0.0090 (14)0.0298 (16)0.0095 (15)
C10.0337 (19)0.045 (2)0.037 (2)0.0012 (16)0.0183 (16)0.0034 (17)
C20.0314 (18)0.0345 (19)0.038 (2)0.0022 (15)0.0159 (16)0.0009 (16)
C30.037 (2)0.039 (2)0.043 (2)0.0103 (17)0.0138 (18)0.0039 (18)
C40.046 (2)0.064 (2)0.035 (2)0.015 (2)0.0181 (19)0.003 (2)
C50.046 (2)0.060 (2)0.046 (2)0.005 (2)0.025 (2)0.011 (2)
C60.043 (2)0.042 (2)0.045 (2)0.0020 (19)0.0247 (18)0.0021 (19)
C70.058 (2)0.040 (2)0.055 (2)0.0046 (19)0.032 (2)0.0053 (19)
C80.054 (2)0.068 (3)0.059 (2)0.009 (2)0.041 (2)0.012 (2)
C90.049 (2)0.050 (2)0.068 (2)0.004 (2)0.043 (2)0.011 (2)
C100.045 (2)0.040 (2)0.066 (2)0.0138 (18)0.031 (2)0.016 (2)
C110.064 (2)0.031 (2)0.066 (2)0.0147 (19)0.039 (2)0.0104 (19)
C120.038 (2)0.045 (2)0.051 (2)0.0141 (19)0.0248 (18)0.017 (2)
C130.042 (2)0.046 (2)0.040 (2)0.0026 (18)0.0205 (18)0.0064 (18)
C140.040 (2)0.063 (3)0.057 (2)0.006 (2)0.022 (2)0.014 (2)
C150.055 (2)0.056 (2)0.055 (2)0.012 (2)0.023 (2)0.007 (2)
C160.072 (3)0.039 (2)0.069 (3)0.001 (2)0.038 (2)0.009 (2)
C170.050 (2)0.043 (2)0.055 (2)0.0035 (19)0.031 (2)0.011 (2)
C180.045 (2)0.036 (2)0.040 (2)0.0041 (17)0.0241 (18)0.0073 (17)
Geometric parameters (Å, º) top
Cu1—O11.913 (2)C10—C111.523 (5)
Cu1—O21.955 (2)C12—C131.505 (5)
Cu1—O2i2.381 (3)C13—C141.387 (6)
Cu1—N12.026 (4)C13—C181.408 (5)
Cu1—N22.033 (3)C14—C151.371 (6)
Cl1—C21.740 (4)C15—C161.368 (7)
Cl2—C41.751 (4)C16—C171.383 (6)
Cl3—C151.752 (5)C17—C181.409 (5)
Cl4—C171.744 (4)C3—H10.930
O1—C11.313 (5)C5—H20.930
O2—C181.332 (4)C7—H30.970
N1—C71.472 (4)C7—H40.970
N1—C81.470 (7)C8—H50.970
N1—C111.484 (5)C8—H60.970
N2—C91.479 (7)C9—H70.970
N2—C101.487 (4)C9—H80.970
N2—C121.472 (4)C10—H90.970
C1—C21.406 (4)C10—H100.970
C1—C61.419 (6)C11—H110.970
C2—C31.373 (6)C11—H120.970
C3—C41.372 (7)C12—H130.970
C4—C51.373 (5)C12—H140.970
C5—C61.378 (6)C14—H150.930
C6—C71.519 (5)C16—H160.930
C8—C91.521 (5)
O1—Cu1—O297.69 (11)C13—C14—C15120.3 (4)
O1—Cu1—O2i96.68 (12)Cl3—C15—C14119.7 (3)
O1—Cu1—N193.97 (12)Cl3—C15—C16119.6 (3)
O1—Cu1—N2162.75 (17)C14—C15—C16120.7 (4)
O2—Cu1—O2i85.84 (11)C15—C16—C17119.2 (4)
O2—Cu1—N1163.66 (13)Cl4—C17—C16118.3 (3)
O2—Cu1—N292.90 (12)Cl4—C17—C18119.2 (3)
O2i—Cu1—N1104.18 (13)C16—C17—C18122.5 (4)
O2i—Cu1—N297.64 (12)O2—C18—C13122.8 (3)
N1—Cu1—N273.22 (13)O2—C18—C17121.3 (3)
Cu1—O1—C1121.8 (3)C13—C18—C17115.9 (3)
Cu1—O2—Cu1i94.16 (10)C2—C3—H1120.4
Cu1—O2—C18114.4 (3)C4—C3—H1120.4
Cu1i—O2—C18132.1 (2)C4—C5—H2119.9
Cu1—N1—C7115.6 (3)C6—C5—H2119.9
Cu1—N1—C8102.7 (2)N1—C7—H3109.1
Cu1—N1—C11102.5 (2)N1—C7—H4109.1
C7—N1—C8113.9 (3)C6—C7—H3109.1
C7—N1—C11112.1 (2)C6—C7—H4109.1
C8—N1—C11109.0 (3)H3—C7—H4107.8
Cu1—N2—C9102.5 (2)N1—C8—H5110.1
Cu1—N2—C10103.1 (2)N1—C8—H6110.1
Cu1—N2—C12116.0 (2)C9—C8—H5110.1
C9—N2—C10107.9 (3)C9—C8—H6110.1
C9—N2—C12113.3 (3)H5—C8—H6108.4
C10—N2—C12112.8 (3)N2—C9—H7110.2
O1—C1—C2120.9 (4)N2—C9—H8110.2
O1—C1—C6123.2 (3)C8—C9—H7110.2
C2—C1—C6115.8 (3)C8—C9—H8110.2
Cl1—C2—C1117.9 (3)H7—C9—H8108.5
Cl1—C2—C3119.3 (2)N2—C10—H9110.3
C1—C2—C3122.7 (4)N2—C10—H10110.3
C2—C3—C4119.2 (3)C11—C10—H9110.3
Cl2—C4—C3118.7 (3)C11—C10—H10110.3
Cl2—C4—C5120.4 (4)H9—C10—H10108.5
C3—C4—C5120.8 (4)N1—C11—H11110.1
C4—C5—C6120.2 (4)N1—C11—H12110.1
C1—C6—C5121.2 (3)C10—C11—H11110.1
C1—C6—C7118.5 (4)C10—C11—H12110.1
C5—C6—C7120.2 (4)H11—C11—H12108.4
N1—C7—C6112.6 (3)N2—C12—H13109.6
N1—C8—C9107.8 (4)N2—C12—H14109.6
N2—C9—C8107.7 (3)C13—C12—H13109.6
N2—C10—C11107.3 (3)C13—C12—H14109.6
N1—C11—C10107.9 (3)H13—C12—H14108.1
N2—C12—C13110.3 (2)C13—C14—H15119.8
C12—C13—C14119.9 (3)C15—C14—H15119.8
C12—C13—C18118.8 (3)C15—C16—H16120.4
C14—C13—C18121.2 (3)C17—C16—H16120.4
O1—Cu1—O2—Cu1i96.20 (12)C8—N1—C7—C666.1 (5)
O1—Cu1—O2—C18123.4 (2)C7—N1—C11—C10170.3 (4)
O2—Cu1—O1—C1134.9 (2)C11—N1—C7—C6169.5 (4)
O1—Cu1—O2i—Cu1i97.27 (11)C8—N1—C11—C1062.6 (5)
O1—Cu1—O2i—C18i31.3 (3)C11—N1—C8—C963.2 (4)
O2i—Cu1—O1—C1138.5 (2)Cu1—N2—C9—C844.0 (3)
O1—Cu1—N1—C712.9 (3)Cu1—N2—C10—C1143.3 (4)
O1—Cu1—N1—C8111.7 (2)Cu1—N2—C12—C1353.1 (4)
O1—Cu1—N1—C11135.2 (2)C9—N2—C10—C1164.7 (4)
N1—Cu1—O1—C133.7 (3)C10—N2—C9—C864.4 (3)
O1—Cu1—N2—C912.7 (5)C9—N2—C12—C1365.1 (4)
O1—Cu1—N2—C1099.3 (4)C12—N2—C9—C8169.8 (3)
O1—Cu1—N2—C12136.8 (4)C10—N2—C12—C13171.8 (4)
N2—Cu1—O1—C17.5 (5)C12—N2—C10—C11169.2 (4)
O2—Cu1—O2i—C18i128.6 (3)O1—C1—C2—Cl11.8 (5)
O2i—Cu1—O2—C18140.4 (2)O1—C1—C2—C3179.4 (3)
O2—Cu1—N1—C7148.4 (3)O1—C1—C6—C5179.4 (3)
O2—Cu1—N1—C823.8 (5)O1—C1—C6—C75.2 (5)
O2—Cu1—N1—C1189.3 (5)C2—C1—C6—C52.3 (5)
N1—Cu1—O2—Cu1i128.7 (4)C2—C1—C6—C7173.1 (3)
N1—Cu1—O2—C1811.7 (5)C6—C1—C2—Cl1176.5 (2)
O2—Cu1—N2—C9115.2 (2)C6—C1—C2—C31.0 (5)
O2—Cu1—N2—C10132.8 (3)Cl1—C2—C3—C4178.9 (3)
O2—Cu1—N2—C128.9 (3)C1—C2—C3—C41.3 (6)
N2—Cu1—O2—Cu1i97.46 (12)C2—C3—C4—Cl2179.2 (3)
N2—Cu1—O2—C1843.0 (2)C2—C3—C4—C52.5 (6)
O2i—Cu1—N1—C785.0 (3)Cl2—C4—C5—C6177.9 (3)
O2i—Cu1—N1—C8150.4 (2)C3—C4—C5—C61.3 (6)
O2i—Cu1—N1—C1137.3 (2)C4—C5—C6—C11.2 (6)
N1—Cu1—O2i—Cu1i166.91 (10)C4—C5—C6—C7174.1 (4)
N1—Cu1—O2i—C18i64.5 (3)C1—C6—C7—N155.4 (6)
O2i—Cu1—N2—C9158.6 (2)C5—C6—C7—N1129.1 (4)
O2i—Cu1—N2—C1046.6 (3)N1—C8—C9—N20.5 (4)
O2i—Cu1—N2—C1277.3 (2)N2—C10—C11—N11.5 (6)
N2—Cu1—O2i—Cu1i92.37 (12)N2—C12—C13—C14120.3 (4)
N2—Cu1—O2i—C18i139.0 (3)N2—C12—C13—C1856.3 (6)
N1—Cu1—N2—C956.1 (2)C12—C13—C14—C15177.7 (4)
N1—Cu1—N2—C1056.0 (3)C12—C13—C18—O22.5 (7)
N1—Cu1—N2—C12179.9 (2)C12—C13—C18—C17176.0 (4)
N2—Cu1—N1—C7178.8 (3)C14—C13—C18—O2179.0 (4)
N2—Cu1—N1—C856.5 (2)C14—C13—C18—C170.5 (7)
N2—Cu1—N1—C1156.5 (2)C18—C13—C14—C151.1 (8)
Cu1—O1—C1—C2140.0 (3)C13—C14—C15—Cl3179.6 (4)
Cu1—O1—C1—C641.7 (5)C13—C14—C15—C162.2 (8)
Cu1—O2—C18—C1354.9 (5)Cl3—C15—C16—C17179.0 (4)
Cu1—O2—C18—C17123.5 (4)C14—C15—C16—C171.6 (9)
Cu1i—O2—C18—C1366.2 (6)C15—C16—C17—Cl4178.5 (4)
Cu1i—O2—C18—C17115.3 (4)C15—C16—C17—C180.2 (6)
Cu1—N1—C7—C652.4 (5)Cl4—C17—C18—O21.0 (7)
Cu1—N1—C8—C945.0 (3)Cl4—C17—C18—C13177.5 (3)
Cu1—N1—C11—C1045.7 (4)C16—C17—C18—O2179.7 (5)
C7—N1—C8—C9170.8 (3)C16—C17—C18—C131.2 (7)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H12···Cl4i0.972.763.544 (5)138
C12—H14···O1i0.972.193.112 (6)159
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C18H16Cl4N2O2)2]
Mr995.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.1772 (18), 15.3901 (18), 15.1397 (14)
β (°) 121.140 (6)
V3)4023.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.20 × 0.08 × 0.07
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.855, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
4759, 4634, 2574
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 0.99
No. of reflections4634
No. of parameters245
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: WinAFC (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—O11.913 (2)Cu1—N12.026 (4)
Cu1—O21.955 (2)Cu1—N22.033 (3)
Cu1—O2i2.381 (3)
O1—Cu1—O297.69 (11)O2—Cu1—N292.90 (12)
O1—Cu1—O2i96.68 (12)O2i—Cu1—N1104.18 (13)
O1—Cu1—N193.97 (12)O2i—Cu1—N297.64 (12)
O2—Cu1—O2i85.84 (11)N1—Cu1—N273.22 (13)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H12···Cl4i0.972.763.544 (5)138
C12—H14···O1i0.972.193.112 (6)159
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This study was supported financially in part by Grants-in-Aid (No. 20550075) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationButcher, R. J., Pourian, M. & Jasinski, J. P. (2007). Acta Cryst. E63, m1913–m1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubono, K., Hirayama, N., Kokusen, H. & Yokoi, K. (2003). Anal. Sci. 19, 645–646.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKubono, K. & Yokoi, K. (2007). Acta Cryst. C63, o535–o537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMassoud, S. S. & Mautner, F. A. (2004). Inorg. Chem. Commun. 7, 559–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinberger, P., Costisor, O., Tudose, R., Baumgartner, O. & Linert, W. (2000). J. Mol. Struct. 519, 21–31.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1685-m1686
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds