organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3027-o3028

Redetermination of 2-[4-(2-hy­droxy­ethyl)piperazin-1-ium-1-yl]ethanesul­fonate at 100 K

aUniversity of Virginia, Department of Molecular Physiology & Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
*Correspondence e-mail: maks@iwonka.med.virginia.edu

(Received 15 September 2009; accepted 15 October 2009; online 7 November 2009)

The crystal structure of the title compound (common name HEPES), C8H18N2O4S, has been redetermined at 100 K in order to properly elucidate the protonation state of the HEPES molecule. The piperazine ring has a chair conformation and one of the N atoms in the ring is protonated, which was not previously reported [Gao, Yin, Yang, & Xue (2004). Acta Cryst. E60, o1328–o1329]. The change of protonation state of the nitrogen atom significantly affects the intermolecular interactions in the HEPES crystal. The structure is stabilized by N—H⋯O and O—H⋯O hydrogen bonds and ionic inter­actions, as the title compound in solid state is a zwitterion. HEPES mol­ecules pack in layers that are held together by ionic and weak inter­actions, while a hydrogen-bonded network connects the layers.

Related literature

For background to HEPES and analogous compounds, see: Ferguson et al. (1980[Ferguson, W. J., Braunschweiger, K. I., Braunschweiger, W. R., Smith, J. R., McCormick, J. J., Wasmann, C. C., Jarvis, N. P., Bell, D. H. & Good, N. E. (1980). Anal. Biochem. 104, 300-310.]); Good & Izawa (1972[Good, N. E. & Izawa, S. (1972). Methods in Enzymology, Vol. 24, pp. 53-68. New York: Academic Press.]); Good et al. (1966[Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467-477.]). For the crystal structure of HEPES crystallized from methanol, see: Wouters et al. (1996[Wouters, J., Häming, L. & Sheldrick, G. (1996). Acta Cryst. C52, 1687-1688.]) and from water, see: Gao et al. (2004[Gao, F., Yin, C., Yang, P. & Xue, G. (2004). Acta Cryst. E60, o1328-o1329.]). For related structures, see: Kubicki et al. (2007[Kubicki, M., Adamiak, D. A., Rypniewski, W. R. & Olejniczak, A. (2007). Acta Cryst. E63, o2604-o2606.]); Chruszcz et al. (2005[Chruszcz, M., Zheng, H., Cymborowski, M., Gawlicka-Chruszcz, A. & Minor, W. (2005). Acta Cryst. E61, o3190-o3191.]); Zhao et al. (2006[Zhao, J., Zhang, H. & Ng, S. W. (2006). Acta Cryst. E62, o3424-o3425.]).

[Scheme 1]

Experimental

Crystal data
  • C8H18N2O4S

  • Mr = 238.31

  • Orthorhombic, P b c a

  • a = 8.341 (1) Å

  • b = 9.567 (1) Å

  • c = 27.066 (1) Å

  • V = 2159.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.86, Tmax = 0.93

  • 613697 measured reflections

  • 17694 independent reflections

  • 14854 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.099

  • S = 1.04

  • 17694 reflections

  • 208 parameters

  • All H-atom parameters refined

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯N2i 0.85 (1) 1.99 (1) 2.8368 (4) 173 (1)
N1—H1N⋯O2ii 0.83 (1) 1.92 (1) 2.7414 (4) 169 (1)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM (Minor et al., 2006[Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859-866.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM; molecular graphics: HKL-3000SM, ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POV-RAY (The POV-RAY Team, 2004[The POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/ .]); software used to prepare material for publication: HKL-3000SM.

Supporting information


Comment top

The title compound, (I), known commonly as HEPES, is a sulfonic compound used as a zwitterionic buffer. HEPES and analogous compounds (known as the Good buffers) are used during the study of biological processes (Good et al., 1966; Good & Izawa, 1972; Ferguson et al., 1980), and very often during crystallization of macromolecules.

The crystal structures of HEPES crystallized from methanol (determined at 293 K - Wouters et al., 1996) and from water (298 K - Gao et al., 2004) have been already reported. Both previously reported structures crystallized in the Pbca space group, but with different unit-cell parameters. Not only the unit-cell parameters, but also the conformations of the HEPES molecules were different. However, our attention was turned to differences in the reported protonation states of the HEPES molecules. In the structure reported by Wouters et al., the HEPES molecule was presented as zwitterionic (II), while in structure reported by Gao et al. HEPES had both piperazine nitrogen atoms non-protonated and a protonated sulfonic group (III). The non-zwitterionic form of HEPES is quite unusual, as all previously determined structures of compounds from this group, e.g. MES [2-(N-morpholino)ethanesulfonic acid] (Kubicki et al., 2007), MOPS [3-(N-morpholino)propanesulfonic acid] (Chruszcz et al., 2005), PBHPS [piperazine-1,4-diylbis(2-hydroxypropanesulfonic acid)] (Zhao et al., 2006), consistently report zwitterionic forms as being observed in the solid state.

In order to localize all hydrogen atoms, the structure determination was performed at 100 K. The crystal structure of the title compound reported here is isomorphous to the structure reported by Gao et al., but a more detailed analysis revealed that the HEPES molecules are zwitterionic and the nitrogen atom (N1) is protonated (Fig. 1). Change of the localization of the hydrogen atom in comparison with the previously reported structure (Gao et al., 2004) significantly affects the hydrogen bond network (Fig. 2, Table 1), which we believed was previously incorrectly determined. To confirm our finding, we also performed a structural analysis of HEPES crystals (crystallized from water or taken directly from the bottle provided by SIGMA) at 293 K. In both cases (100 K and 293 K) the structures had the same protonation state, which excluded the possibility of temperature dependent changes of protonation.

The differing protonation states reported here and in the structure determined by Wouters et al. suggest that the change in protonation state of the HEPES molecule (and/or the change of the conformations of 2-hydroxyethyl and enthanesulfonic moieties) results in generation of polymorphic forms.

The crystal structure of HEPES is stabilized mainly by hydrogen bonds and ionic interactions. Both nitrogen atoms from the piperazine ring, oxygen atom (O4) from the hydroxyl group and one of the oxygen atom (O2) from the sulfonic group are involved in formation of the hydrogen bond network. Hydrogen bonds extend along the [100] direction and details of their geometric parameters are summarized in Table 1.The HEPES molecules pack in layers that are held together by ionic and weak interactions.

Related literature top

For background to HEPES and analogous compounds, see: Ferguson et al. (1980); Good & Izawa (1972); Good et al. (1966). For the crystal structure of HEPES crystallized from methanol, see: Wouters et al. (1996) and from water, see: Gao et al. (2004). For related structures, see: Kubicki et al. (2007); Chruszcz et al. (2005); Zhao et al. (2006).

Experimental top

HEPES was purchased from SIGMA (99.5% purity, lot 036 K5461). The crystal of (I), used for X-ray diffraction study, was obtained by slow evaporation of HEPES solution in water.

Refinement top

All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Computing details top

Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); molecular graphics: HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004); software used to prepare material for publication: HKL-3000SM (Minor et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structures of the title compound. Displacement ellipsoids are drawn at the 75% probability level and hydrogen atoms are drawn as spheres of an arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of compound (I) shown along the [010] axis. Hydrogen atoms are bonds are marked in green, and H-bonds are shown as blue, dashed lines.
[Figure 3] Fig. 3. The structures of (I), (II) and (III).
2-[4-(2-Hydroxyethyl)piperazin-1-ium-1-yl]ethanesulfonate top
Crystal data top
C8H18N2O4SF(000) = 1024.0
Mr = 238.31Dx = 1.466 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ac 2abCell parameters from 613697 reflections
a = 8.341 (1) Åθ = 2.9–62.9°
b = 9.567 (1) ŵ = 0.30 mm1
c = 27.066 (1) ÅT = 100 K
V = 2159.8 (4) Å3Block, colorless
Z = 80.50 × 0.50 × 0.23 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
17694 independent reflections
Radiation source: fine-focus sealed tube14854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10 pixels mm-1θmax = 62.9°, θmin = 2.9°
ω scan with χ offseth = 2020
Absorption correction: multi-scan
(Otwinowski et al., 2003)
k = 2323
Tmin = 0.86, Tmax = 0.93l = 6767
613697 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.099All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.060P)2 + 0.0821P]
where P = (Fo2 + 2Fc2)/3
17694 reflections(Δ/σ)max = 0.013
208 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C8H18N2O4SV = 2159.8 (4) Å3
Mr = 238.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.341 (1) ŵ = 0.30 mm1
b = 9.567 (1) ÅT = 100 K
c = 27.066 (1) Å0.50 × 0.50 × 0.23 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
17694 independent reflections
Absorption correction: multi-scan
(Otwinowski et al., 2003)
14854 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.93Rint = 0.036
613697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.04Δρmax = 0.83 e Å3
17694 reflectionsΔρmin = 0.80 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.449764 (8)0.776637 (6)0.555875 (2)0.01145 (1)
N20.52317 (2)0.69925 (2)0.302785 (7)0.01111 (2)
O20.30713 (2)0.86815 (2)0.555768 (7)0.01413 (3)
N10.53191 (2)0.75196 (2)0.408697 (7)0.01121 (2)
O40.72742 (3)0.83527 (2)0.216353 (8)0.01514 (3)
C10.45506 (3)0.69919 (3)0.495798 (9)0.01321 (3)
C50.49778 (3)0.58710 (2)0.339211 (8)0.01316 (3)
O10.59735 (3)0.85596 (3)0.560910 (9)0.01744 (3)
C30.56026 (3)0.86534 (2)0.371519 (9)0.01330 (3)
C60.42540 (3)0.64240 (2)0.386736 (8)0.01298 (3)
C40.63131 (3)0.80396 (2)0.324618 (8)0.01271 (3)
C20.46765 (3)0.81142 (3)0.456032 (9)0.01364 (3)
C80.59941 (3)0.73733 (3)0.213505 (9)0.01485 (3)
C70.58957 (3)0.63743 (2)0.257306 (8)0.01343 (3)
O30.43278 (4)0.66097 (3)0.590283 (9)0.02055 (4)
H1A0.5416 (10)0.6363 (10)0.4955 (4)0.030 (2)*
H7B0.5234 (9)0.5552 (9)0.2488 (3)0.0238 (17)*
H2A0.5445 (9)0.8874 (10)0.4673 (3)0.0253 (19)*
H4B0.6453 (10)0.8784 (8)0.3001 (3)0.0252 (16)*
H7A0.7005 (8)0.5925 (7)0.2643 (3)0.0184 (14)*
H3B0.4576 (9)0.9063 (10)0.3665 (3)0.0253 (19)*
H6A0.4173 (11)0.5721 (9)0.4086 (3)0.030 (2)*
H6B0.3201 (9)0.6878 (8)0.3822 (3)0.0199 (15)*
H4A0.7367 (10)0.7630 (8)0.3328 (3)0.0193 (15)*
H1O40.8138 (12)0.7897 (9)0.2127 (3)0.038 (2)*
H5A0.6006 (9)0.5394 (8)0.3472 (3)0.0175 (14)*
H3A0.6309 (10)0.9315 (7)0.3860 (3)0.0217 (16)*
H5B0.4242 (10)0.5192 (9)0.3260 (3)0.0249 (18)*
H1B0.3616 (9)0.6429 (8)0.4933 (3)0.0220 (16)*
H8B0.5045 (10)0.7906 (9)0.2102 (3)0.0225 (17)*
H1N0.6197 (10)0.7168 (7)0.4156 (3)0.0209 (16)*
H2B0.3673 (10)0.8534 (8)0.4489 (3)0.0235 (17)*
H8A0.6076 (9)0.6844 (8)0.1846 (3)0.0193 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01147 (2)0.01296 (2)0.00992 (2)0.00039 (1)0.00046 (1)0.00017 (1)
N20.01141 (5)0.01171 (5)0.01023 (5)0.00043 (4)0.00008 (4)0.00049 (4)
O20.01144 (6)0.01507 (5)0.01589 (6)0.00088 (4)0.00135 (4)0.00176 (4)
N10.01141 (5)0.01222 (5)0.01001 (5)0.00009 (4)0.00001 (4)0.00027 (4)
O40.01385 (6)0.01526 (6)0.01631 (6)0.00036 (5)0.00216 (5)0.00128 (4)
C10.01505 (8)0.01313 (6)0.01144 (6)0.00002 (5)0.00161 (5)0.00042 (5)
C50.01598 (8)0.01164 (6)0.01185 (6)0.00126 (5)0.00163 (5)0.00039 (4)
O10.01166 (6)0.02271 (8)0.01794 (7)0.00175 (5)0.00219 (5)0.00297 (6)
C30.01666 (8)0.01192 (6)0.01131 (6)0.00133 (5)0.00028 (5)0.00032 (4)
C60.01328 (7)0.01395 (6)0.01170 (6)0.00217 (5)0.00141 (5)0.00079 (5)
C40.01330 (7)0.01364 (6)0.01120 (6)0.00253 (5)0.00046 (5)0.00035 (5)
C20.01686 (8)0.01329 (6)0.01078 (6)0.00146 (6)0.00107 (5)0.00046 (5)
C80.01395 (8)0.01909 (8)0.01151 (6)0.00078 (6)0.00002 (5)0.00110 (5)
C70.01524 (8)0.01335 (6)0.01171 (6)0.00001 (5)0.00150 (5)0.00108 (5)
O30.03015 (11)0.01750 (7)0.01399 (6)0.00248 (7)0.00373 (6)0.00455 (5)
Geometric parameters (Å, º) top
S1—O11.4525 (3)C5—H5A0.995 (8)
S1—O31.4532 (2)C5—H5B0.963 (8)
S1—O21.4771 (2)C3—C41.5190 (3)
S1—C11.7874 (3)C3—H3B0.951 (8)
N2—C41.4719 (3)C3—H3A0.949 (8)
N2—C51.4724 (3)C6—H6A0.898 (9)
N2—C71.4736 (3)C6—H6B0.987 (8)
N1—C61.4971 (3)C4—H4B0.981 (8)
N1—C31.4984 (3)C4—H4A0.988 (8)
N1—C21.5008 (3)C2—H2A1.016 (9)
N1—H1N0.827 (8)C2—H2B0.948 (8)
O4—C81.4226 (4)C8—C71.5250 (4)
O4—H1O40.848 (10)C8—H8B0.946 (9)
C1—C21.5239 (4)C8—H8A0.935 (8)
C1—H1A0.939 (9)C7—H7B0.988 (8)
C1—H1B0.950 (8)C7—H7A1.037 (7)
C5—C61.5162 (3)
O1—S1—O3114.856 (17)C4—C3—H3A111.1 (5)
O1—S1—O2111.907 (17)H3B—C3—H3A110.1 (7)
O3—S1—O2111.966 (15)N1—C6—C5110.17 (2)
O1—S1—C1106.317 (13)N1—C6—H6A107.9 (6)
O3—S1—C1105.650 (15)C5—C6—H6A109.1 (6)
O2—S1—C1105.296 (12)N1—C6—H6B105.6 (4)
C4—N2—C5108.376 (18)C5—C6—H6B113.7 (4)
C4—N2—C7112.22 (2)H6A—C6—H6B110.1 (7)
C5—N2—C7108.719 (19)N2—C4—C3111.07 (2)
C6—N1—C3109.504 (18)N2—C4—H4B107.2 (5)
C6—N1—C2113.10 (2)C3—C4—H4B109.3 (5)
C3—N1—C2110.809 (19)N2—C4—H4A111.4 (4)
C6—N1—H1N109.3 (5)C3—C4—H4A108.3 (4)
C3—N1—H1N107.8 (5)H4B—C4—H4A109.5 (6)
C2—N1—H1N106.1 (5)N1—C2—C1111.129 (19)
C8—O4—H1O4107.0 (6)N1—C2—H2A107.6 (5)
C2—C1—S1110.620 (17)C1—C2—H2A109.6 (5)
C2—C1—H1A113.1 (6)N1—C2—H2B107.6 (5)
S1—C1—H1A106.9 (6)C1—C2—H2B112.4 (5)
C2—C1—H1B113.9 (5)H2A—C2—H2B108.4 (7)
S1—C1—H1B106.2 (5)O4—C8—C7114.27 (2)
H1A—C1—H1B105.5 (8)O4—C8—H8B106.2 (5)
N2—C5—C6111.782 (19)C7—C8—H8B111.5 (5)
N2—C5—H5A110.8 (4)O4—C8—H8A110.3 (5)
C6—C5—H5A108.7 (4)C7—C8—H8A108.4 (5)
N2—C5—H5B109.5 (5)H8B—C8—H8A105.8 (7)
C6—C5—H5B107.3 (5)N2—C7—C8114.71 (2)
H5A—C5—H5B108.7 (7)N2—C7—H7B107.7 (5)
N1—C3—C4110.055 (19)C8—C7—H7B110.3 (5)
N1—C3—H3B104.6 (5)N2—C7—H7A110.5 (4)
C4—C3—H3B113.0 (5)C8—C7—H7A110.7 (4)
N1—C3—H3A107.7 (4)H7B—C7—H7A102.1 (5)
O1—S1—C1—C259.26 (2)C5—N2—C4—C359.66 (2)
O3—S1—C1—C2178.27 (2)C7—N2—C4—C3179.726 (19)
O2—S1—C1—C259.63 (2)N1—C3—C4—N259.63 (3)
C4—N2—C5—C659.21 (3)C6—N1—C2—C162.57 (3)
C7—N2—C5—C6178.55 (2)C3—N1—C2—C1174.03 (2)
C6—N1—C3—C456.75 (3)S1—C1—C2—N1159.105 (18)
C2—N1—C3—C4177.80 (2)C4—N2—C7—C868.69 (3)
C3—N1—C6—C555.97 (3)C5—N2—C7—C8171.44 (2)
C2—N1—C6—C5179.911 (19)O4—C8—C7—N276.07 (3)
N2—C5—C6—N158.33 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···N2i0.85 (1)1.99 (1)2.8368 (4)173 (1)
N1—H1N···O2ii0.83 (1)1.92 (1)2.7414 (4)169 (1)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H18N2O4S
Mr238.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)8.341 (1), 9.567 (1), 27.066 (1)
V3)2159.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.50 × 0.50 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Otwinowski et al., 2003)
Tmin, Tmax0.86, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
613697, 17694, 14854
Rint0.036
(sin θ/λ)max1)1.253
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.099, 1.04
No. of reflections17694
No. of parameters208
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.83, 0.80

Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004), HKL-3000SM (Minor et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···N2i0.85 (1)1.99 (1)2.8368 (4)173 (1)
N1—H1N···O2ii0.83 (1)1.92 (1)2.7414 (4)169 (1)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Zbigniew Dauter for helpful discussions. This work was supported by contract GI11496 from HKL Research, Inc.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChruszcz, M., Zheng, H., Cymborowski, M., Gawlicka-Chruszcz, A. & Minor, W. (2005). Acta Cryst. E61, o3190–o3191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, W. J., Braunschweiger, K. I., Braunschweiger, W. R., Smith, J. R., McCormick, J. J., Wasmann, C. C., Jarvis, N. P., Bell, D. H. & Good, N. E. (1980). Anal. Biochem. 104, 300–310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGao, F., Yin, C., Yang, P. & Xue, G. (2004). Acta Cryst. E60, o1328–o1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGood, N. E. & Izawa, S. (1972). Methods in Enzymology, Vol. 24, pp. 53–68. New York: Academic Press.  Google Scholar
First citationGood, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467–477.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKubicki, M., Adamiak, D. A., Rypniewski, W. R. & Olejniczak, A. (2007). Acta Cryst. E63, o2604–o2606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThe POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/Google Scholar
First citationWouters, J., Häming, L. & Sheldrick, G. (1996). Acta Cryst. C52, 1687–1688.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhao, J., Zhang, H. & Ng, S. W. (2006). Acta Cryst. E62, o3424–o3425.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3027-o3028
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds