organic compounds
Redetermination of 2-[4-(2-hydroxyethyl)piperazin-1-ium-1-yl]ethanesulfonate at 100 K
aUniversity of Virginia, Department of Molecular Physiology & Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
*Correspondence e-mail: maks@iwonka.med.virginia.edu
The 8H18N2O4S, has been redetermined at 100 K in order to properly elucidate the protonation state of the HEPES molecule. The piperazine ring has a chair conformation and one of the N atoms in the ring is protonated, which was not previously reported [Gao, Yin, Yang, & Xue (2004). Acta Cryst. E60, o1328–o1329]. The change of protonation state of the nitrogen atom significantly affects the intermolecular interactions in the HEPES crystal. The structure is stabilized by N—H⋯O and O—H⋯O hydrogen bonds and ionic interactions, as the title compound in solid state is a zwitterion. HEPES molecules pack in layers that are held together by ionic and weak interactions, while a hydrogen-bonded network connects the layers.
of the title compound (common name HEPES), CRelated literature
For background to HEPES and analogous compounds, see: Ferguson et al. (1980); Good & Izawa (1972); Good et al. (1966). For the of HEPES crystallized from methanol, see: Wouters et al. (1996) and from water, see: Gao et al. (2004). For related structures, see: Kubicki et al. (2007); Chruszcz et al. (2005); Zhao et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM; molecular graphics: HKL-3000SM, ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004); software used to prepare material for publication: HKL-3000SM.
Supporting information
10.1107/S1600536809042512/fl2269sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809042512/fl2269Isup2.hkl
HEPES was purchased from SIGMA (99.5% purity, lot 036 K5461). The crystal of (I), used for X-ray diffraction study, was obtained by slow evaporation of HEPES solution in water.
All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.
Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); molecular graphics: HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004); software used to prepare material for publication: HKL-3000SM (Minor et al., 2006).C8H18N2O4S | F(000) = 1024.0 |
Mr = 238.31 | Dx = 1.466 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 613697 reflections |
a = 8.341 (1) Å | θ = 2.9–62.9° |
b = 9.567 (1) Å | µ = 0.30 mm−1 |
c = 27.066 (1) Å | T = 100 K |
V = 2159.8 (4) Å3 | Block, colorless |
Z = 8 | 0.50 × 0.50 × 0.23 mm |
Rigaku R-AXIS RAPID diffractometer | 17694 independent reflections |
Radiation source: fine-focus sealed tube | 14854 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10 pixels mm-1 | θmax = 62.9°, θmin = 2.9° |
ω scan with χ offset | h = −20→20 |
Absorption correction: multi-scan (Otwinowski et al., 2003) | k = −23→23 |
Tmin = 0.86, Tmax = 0.93 | l = −67→67 |
613697 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.099 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.0821P] where P = (Fo2 + 2Fc2)/3 |
17694 reflections | (Δ/σ)max = 0.013 |
208 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
C8H18N2O4S | V = 2159.8 (4) Å3 |
Mr = 238.31 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.341 (1) Å | µ = 0.30 mm−1 |
b = 9.567 (1) Å | T = 100 K |
c = 27.066 (1) Å | 0.50 × 0.50 × 0.23 mm |
Rigaku R-AXIS RAPID diffractometer | 17694 independent reflections |
Absorption correction: multi-scan (Otwinowski et al., 2003) | 14854 reflections with I > 2σ(I) |
Tmin = 0.86, Tmax = 0.93 | Rint = 0.036 |
613697 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.099 | All H-atom parameters refined |
S = 1.04 | Δρmax = 0.83 e Å−3 |
17694 reflections | Δρmin = −0.80 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.449764 (8) | 0.776637 (6) | 0.555875 (2) | 0.01145 (1) | |
N2 | 0.52317 (2) | 0.69925 (2) | 0.302785 (7) | 0.01111 (2) | |
O2 | 0.30713 (2) | 0.86815 (2) | 0.555768 (7) | 0.01413 (3) | |
N1 | 0.53191 (2) | 0.75196 (2) | 0.408697 (7) | 0.01121 (2) | |
O4 | 0.72742 (3) | 0.83527 (2) | 0.216353 (8) | 0.01514 (3) | |
C1 | 0.45506 (3) | 0.69919 (3) | 0.495798 (9) | 0.01321 (3) | |
C5 | 0.49778 (3) | 0.58710 (2) | 0.339211 (8) | 0.01316 (3) | |
O1 | 0.59735 (3) | 0.85596 (3) | 0.560910 (9) | 0.01744 (3) | |
C3 | 0.56026 (3) | 0.86534 (2) | 0.371519 (9) | 0.01330 (3) | |
C6 | 0.42540 (3) | 0.64240 (2) | 0.386736 (8) | 0.01298 (3) | |
C4 | 0.63131 (3) | 0.80396 (2) | 0.324618 (8) | 0.01271 (3) | |
C2 | 0.46765 (3) | 0.81142 (3) | 0.456032 (9) | 0.01364 (3) | |
C8 | 0.59941 (3) | 0.73733 (3) | 0.213505 (9) | 0.01485 (3) | |
C7 | 0.58957 (3) | 0.63743 (2) | 0.257306 (8) | 0.01343 (3) | |
O3 | 0.43278 (4) | 0.66097 (3) | 0.590283 (9) | 0.02055 (4) | |
H1A | 0.5416 (10) | 0.6363 (10) | 0.4955 (4) | 0.030 (2)* | |
H7B | 0.5234 (9) | 0.5552 (9) | 0.2488 (3) | 0.0238 (17)* | |
H2A | 0.5445 (9) | 0.8874 (10) | 0.4673 (3) | 0.0253 (19)* | |
H4B | 0.6453 (10) | 0.8784 (8) | 0.3001 (3) | 0.0252 (16)* | |
H7A | 0.7005 (8) | 0.5925 (7) | 0.2643 (3) | 0.0184 (14)* | |
H3B | 0.4576 (9) | 0.9063 (10) | 0.3665 (3) | 0.0253 (19)* | |
H6A | 0.4173 (11) | 0.5721 (9) | 0.4086 (3) | 0.030 (2)* | |
H6B | 0.3201 (9) | 0.6878 (8) | 0.3822 (3) | 0.0199 (15)* | |
H4A | 0.7367 (10) | 0.7630 (8) | 0.3328 (3) | 0.0193 (15)* | |
H1O4 | 0.8138 (12) | 0.7897 (9) | 0.2127 (3) | 0.038 (2)* | |
H5A | 0.6006 (9) | 0.5394 (8) | 0.3472 (3) | 0.0175 (14)* | |
H3A | 0.6309 (10) | 0.9315 (7) | 0.3860 (3) | 0.0217 (16)* | |
H5B | 0.4242 (10) | 0.5192 (9) | 0.3260 (3) | 0.0249 (18)* | |
H1B | 0.3616 (9) | 0.6429 (8) | 0.4933 (3) | 0.0220 (16)* | |
H8B | 0.5045 (10) | 0.7906 (9) | 0.2102 (3) | 0.0225 (17)* | |
H1N | 0.6197 (10) | 0.7168 (7) | 0.4156 (3) | 0.0209 (16)* | |
H2B | 0.3673 (10) | 0.8534 (8) | 0.4489 (3) | 0.0235 (17)* | |
H8A | 0.6076 (9) | 0.6844 (8) | 0.1846 (3) | 0.0193 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01147 (2) | 0.01296 (2) | 0.00992 (2) | 0.00039 (1) | 0.00046 (1) | 0.00017 (1) |
N2 | 0.01141 (5) | 0.01171 (5) | 0.01023 (5) | −0.00043 (4) | 0.00008 (4) | −0.00049 (4) |
O2 | 0.01144 (6) | 0.01507 (5) | 0.01589 (6) | 0.00088 (4) | 0.00135 (4) | −0.00176 (4) |
N1 | 0.01141 (5) | 0.01222 (5) | 0.01001 (5) | 0.00009 (4) | 0.00001 (4) | −0.00027 (4) |
O4 | 0.01385 (6) | 0.01526 (6) | 0.01631 (6) | 0.00036 (5) | 0.00216 (5) | 0.00128 (4) |
C1 | 0.01505 (8) | 0.01313 (6) | 0.01144 (6) | −0.00002 (5) | 0.00161 (5) | −0.00042 (5) |
C5 | 0.01598 (8) | 0.01164 (6) | 0.01185 (6) | −0.00126 (5) | 0.00163 (5) | −0.00039 (4) |
O1 | 0.01166 (6) | 0.02271 (8) | 0.01794 (7) | −0.00175 (5) | −0.00219 (5) | −0.00297 (6) |
C3 | 0.01666 (8) | 0.01192 (6) | 0.01131 (6) | −0.00133 (5) | 0.00028 (5) | −0.00032 (4) |
C6 | 0.01328 (7) | 0.01395 (6) | 0.01170 (6) | −0.00217 (5) | 0.00141 (5) | −0.00079 (5) |
C4 | 0.01330 (7) | 0.01364 (6) | 0.01120 (6) | −0.00253 (5) | 0.00046 (5) | −0.00035 (5) |
C2 | 0.01686 (8) | 0.01329 (6) | 0.01078 (6) | 0.00146 (6) | 0.00107 (5) | −0.00046 (5) |
C8 | 0.01395 (8) | 0.01909 (8) | 0.01151 (6) | −0.00078 (6) | 0.00002 (5) | 0.00110 (5) |
C7 | 0.01524 (8) | 0.01335 (6) | 0.01171 (6) | −0.00001 (5) | 0.00150 (5) | −0.00108 (5) |
O3 | 0.03015 (11) | 0.01750 (7) | 0.01399 (6) | 0.00248 (7) | 0.00373 (6) | 0.00455 (5) |
S1—O1 | 1.4525 (3) | C5—H5A | 0.995 (8) |
S1—O3 | 1.4532 (2) | C5—H5B | 0.963 (8) |
S1—O2 | 1.4771 (2) | C3—C4 | 1.5190 (3) |
S1—C1 | 1.7874 (3) | C3—H3B | 0.951 (8) |
N2—C4 | 1.4719 (3) | C3—H3A | 0.949 (8) |
N2—C5 | 1.4724 (3) | C6—H6A | 0.898 (9) |
N2—C7 | 1.4736 (3) | C6—H6B | 0.987 (8) |
N1—C6 | 1.4971 (3) | C4—H4B | 0.981 (8) |
N1—C3 | 1.4984 (3) | C4—H4A | 0.988 (8) |
N1—C2 | 1.5008 (3) | C2—H2A | 1.016 (9) |
N1—H1N | 0.827 (8) | C2—H2B | 0.948 (8) |
O4—C8 | 1.4226 (4) | C8—C7 | 1.5250 (4) |
O4—H1O4 | 0.848 (10) | C8—H8B | 0.946 (9) |
C1—C2 | 1.5239 (4) | C8—H8A | 0.935 (8) |
C1—H1A | 0.939 (9) | C7—H7B | 0.988 (8) |
C1—H1B | 0.950 (8) | C7—H7A | 1.037 (7) |
C5—C6 | 1.5162 (3) | ||
O1—S1—O3 | 114.856 (17) | C4—C3—H3A | 111.1 (5) |
O1—S1—O2 | 111.907 (17) | H3B—C3—H3A | 110.1 (7) |
O3—S1—O2 | 111.966 (15) | N1—C6—C5 | 110.17 (2) |
O1—S1—C1 | 106.317 (13) | N1—C6—H6A | 107.9 (6) |
O3—S1—C1 | 105.650 (15) | C5—C6—H6A | 109.1 (6) |
O2—S1—C1 | 105.296 (12) | N1—C6—H6B | 105.6 (4) |
C4—N2—C5 | 108.376 (18) | C5—C6—H6B | 113.7 (4) |
C4—N2—C7 | 112.22 (2) | H6A—C6—H6B | 110.1 (7) |
C5—N2—C7 | 108.719 (19) | N2—C4—C3 | 111.07 (2) |
C6—N1—C3 | 109.504 (18) | N2—C4—H4B | 107.2 (5) |
C6—N1—C2 | 113.10 (2) | C3—C4—H4B | 109.3 (5) |
C3—N1—C2 | 110.809 (19) | N2—C4—H4A | 111.4 (4) |
C6—N1—H1N | 109.3 (5) | C3—C4—H4A | 108.3 (4) |
C3—N1—H1N | 107.8 (5) | H4B—C4—H4A | 109.5 (6) |
C2—N1—H1N | 106.1 (5) | N1—C2—C1 | 111.129 (19) |
C8—O4—H1O4 | 107.0 (6) | N1—C2—H2A | 107.6 (5) |
C2—C1—S1 | 110.620 (17) | C1—C2—H2A | 109.6 (5) |
C2—C1—H1A | 113.1 (6) | N1—C2—H2B | 107.6 (5) |
S1—C1—H1A | 106.9 (6) | C1—C2—H2B | 112.4 (5) |
C2—C1—H1B | 113.9 (5) | H2A—C2—H2B | 108.4 (7) |
S1—C1—H1B | 106.2 (5) | O4—C8—C7 | 114.27 (2) |
H1A—C1—H1B | 105.5 (8) | O4—C8—H8B | 106.2 (5) |
N2—C5—C6 | 111.782 (19) | C7—C8—H8B | 111.5 (5) |
N2—C5—H5A | 110.8 (4) | O4—C8—H8A | 110.3 (5) |
C6—C5—H5A | 108.7 (4) | C7—C8—H8A | 108.4 (5) |
N2—C5—H5B | 109.5 (5) | H8B—C8—H8A | 105.8 (7) |
C6—C5—H5B | 107.3 (5) | N2—C7—C8 | 114.71 (2) |
H5A—C5—H5B | 108.7 (7) | N2—C7—H7B | 107.7 (5) |
N1—C3—C4 | 110.055 (19) | C8—C7—H7B | 110.3 (5) |
N1—C3—H3B | 104.6 (5) | N2—C7—H7A | 110.5 (4) |
C4—C3—H3B | 113.0 (5) | C8—C7—H7A | 110.7 (4) |
N1—C3—H3A | 107.7 (4) | H7B—C7—H7A | 102.1 (5) |
O1—S1—C1—C2 | −59.26 (2) | C5—N2—C4—C3 | −59.66 (2) |
O3—S1—C1—C2 | 178.27 (2) | C7—N2—C4—C3 | −179.726 (19) |
O2—S1—C1—C2 | 59.63 (2) | N1—C3—C4—N2 | 59.63 (3) |
C4—N2—C5—C6 | 59.21 (3) | C6—N1—C2—C1 | 62.57 (3) |
C7—N2—C5—C6 | −178.55 (2) | C3—N1—C2—C1 | −174.03 (2) |
C6—N1—C3—C4 | −56.75 (3) | S1—C1—C2—N1 | 159.105 (18) |
C2—N1—C3—C4 | 177.80 (2) | C4—N2—C7—C8 | −68.69 (3) |
C3—N1—C6—C5 | 55.97 (3) | C5—N2—C7—C8 | 171.44 (2) |
C2—N1—C6—C5 | −179.911 (19) | O4—C8—C7—N2 | 76.07 (3) |
N2—C5—C6—N1 | −58.33 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···N2i | 0.85 (1) | 1.99 (1) | 2.8368 (4) | 173 (1) |
N1—H1N···O2ii | 0.83 (1) | 1.92 (1) | 2.7414 (4) | 169 (1) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H18N2O4S |
Mr | 238.31 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 8.341 (1), 9.567 (1), 27.066 (1) |
V (Å3) | 2159.8 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.50 × 0.50 × 0.23 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (Otwinowski et al., 2003) |
Tmin, Tmax | 0.86, 0.93 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 613697, 17694, 14854 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 1.253 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.099, 1.04 |
No. of reflections | 17694 |
No. of parameters | 208 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.83, −0.80 |
Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004), HKL-3000SM (Minor et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···N2i | 0.85 (1) | 1.99 (1) | 2.8368 (4) | 173 (1) |
N1—H1N···O2ii | 0.83 (1) | 1.92 (1) | 2.7414 (4) | 169 (1) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x+1/2, −y+3/2, −z+1. |
Acknowledgements
The authors thank Zbigniew Dauter for helpful discussions. This work was supported by contract GI11496 from HKL Research, Inc.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chruszcz, M., Zheng, H., Cymborowski, M., Gawlicka-Chruszcz, A. & Minor, W. (2005). Acta Cryst. E61, o3190–o3191. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ferguson, W. J., Braunschweiger, K. I., Braunschweiger, W. R., Smith, J. R., McCormick, J. J., Wasmann, C. C., Jarvis, N. P., Bell, D. H. & Good, N. E. (1980). Anal. Biochem. 104, 300–310. CrossRef CAS PubMed Web of Science Google Scholar
Gao, F., Yin, C., Yang, P. & Xue, G. (2004). Acta Cryst. E60, o1328–o1329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Good, N. E. & Izawa, S. (1972). Methods in Enzymology, Vol. 24, pp. 53–68. New York: Academic Press. Google Scholar
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467–477. CrossRef CAS PubMed Web of Science Google Scholar
Kubicki, M., Adamiak, D. A., Rypniewski, W. R. & Olejniczak, A. (2007). Acta Cryst. E63, o2604–o2606. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
The POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/ . Google Scholar
Wouters, J., Häming, L. & Sheldrick, G. (1996). Acta Cryst. C52, 1687–1688. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhao, J., Zhang, H. & Ng, S. W. (2006). Acta Cryst. E62, o3424–o3425. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), known commonly as HEPES, is a sulfonic compound used as a zwitterionic buffer. HEPES and analogous compounds (known as the Good buffers) are used during the study of biological processes (Good et al., 1966; Good & Izawa, 1972; Ferguson et al., 1980), and very often during crystallization of macromolecules.
The crystal structures of HEPES crystallized from methanol (determined at 293 K - Wouters et al., 1996) and from water (298 K - Gao et al., 2004) have been already reported. Both previously reported structures crystallized in the Pbca space group, but with different unit-cell parameters. Not only the unit-cell parameters, but also the conformations of the HEPES molecules were different. However, our attention was turned to differences in the reported protonation states of the HEPES molecules. In the structure reported by Wouters et al., the HEPES molecule was presented as zwitterionic (II), while in structure reported by Gao et al. HEPES had both piperazine nitrogen atoms non-protonated and a protonated sulfonic group (III). The non-zwitterionic form of HEPES is quite unusual, as all previously determined structures of compounds from this group, e.g. MES [2-(N-morpholino)ethanesulfonic acid] (Kubicki et al., 2007), MOPS [3-(N-morpholino)propanesulfonic acid] (Chruszcz et al., 2005), PBHPS [piperazine-1,4-diylbis(2-hydroxypropanesulfonic acid)] (Zhao et al., 2006), consistently report zwitterionic forms as being observed in the solid state.
In order to localize all hydrogen atoms, the structure determination was performed at 100 K. The crystal structure of the title compound reported here is isomorphous to the structure reported by Gao et al., but a more detailed analysis revealed that the HEPES molecules are zwitterionic and the nitrogen atom (N1) is protonated (Fig. 1). Change of the localization of the hydrogen atom in comparison with the previously reported structure (Gao et al., 2004) significantly affects the hydrogen bond network (Fig. 2, Table 1), which we believed was previously incorrectly determined. To confirm our finding, we also performed a structural analysis of HEPES crystals (crystallized from water or taken directly from the bottle provided by SIGMA) at 293 K. In both cases (100 K and 293 K) the structures had the same protonation state, which excluded the possibility of temperature dependent changes of protonation.
The differing protonation states reported here and in the structure determined by Wouters et al. suggest that the change in protonation state of the HEPES molecule (and/or the change of the conformations of 2-hydroxyethyl and enthanesulfonic moieties) results in generation of polymorphic forms.
The crystal structure of HEPES is stabilized mainly by hydrogen bonds and ionic interactions. Both nitrogen atoms from the piperazine ring, oxygen atom (O4) from the hydroxyl group and one of the oxygen atom (O2) from the sulfonic group are involved in formation of the hydrogen bond network. Hydrogen bonds extend along the [100] direction and details of their geometric parameters are summarized in Table 1.The HEPES molecules pack in layers that are held together by ionic and weak interactions.