organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3122-o3123

4-({4-[1-(Meth­oxy­imino)eth­yl]anilino}(phen­yl)methyl­ene)-3-methyl-2-phenyl-1H-pyrazol-5(4H)-one

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bSchool of Environmental Science and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 9 October 2009; accepted 14 November 2009; online 21 November 2009)

In the title compound, C26H24N4O2, the dihedral angles between the central pyrazole ring and the other three benzene rings are 40.02 (3), 77.51 (5) and 55.72 (3)°. A strong intra­molecular N—H⋯O hydrogen bond forms a six-membered ring with an S(6) motif. In the crystal structure, a weak inter­molecular C—H⋯N inter­action with graph-set motif R22(8) and C—H⋯O hydrogen bonds link each mol­ecule to three others, forming an infinite two-dimensional supra­molecular structure.

Related literature

For background to 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone, see: Lahiri et al. (2003[Lahiri, S., Wu, X. L., Yang, W. F., Xu, Y. B. & Yuan, S. G. (2003). J. Radioanal. Nucl. Chem. 257, 431-432.]). For related structures, see: Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Wang et al. (2008[Wang, J.-S., Jiang, Y.-L., Dong, W.-K., Xu, L. & Kong, A.-P. (2008). Acta Cryst. E64, o1794.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Rafiq et al. (2008[Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.]); Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]); Dong et al. (2008[Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N4O2

  • Mr = 424.49

  • Triclinic, [P \overline 1]

  • a = 7.3550 (6) Å

  • b = 11.1609 (13) Å

  • c = 14.9700 (12) Å

  • α = 68.536 (1)°

  • β = 76.654 (2)°

  • γ = 76.182 (2)°

  • V = 1096.46 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.10 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.992

  • 5654 measured reflections

  • 3781 independent reflections

  • 1861 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.246

  • S = 1.03

  • 3781 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 1.95 2.683 (4) 142
C26—H26C⋯N4i 0.96 2.72 3.643 (9) 163
C9—H9⋯O1ii 0.93 2.67 3.398 (6) 135
Symmetry codes: (i) -x-1, -y, -z+1; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) is an efficient extractant of metal ions, and has the potential to form different types of compounds (Lahiri et al., 2003). Some structures of oxime compounds, similar to the title compound (Fig. 1), formed by Schiff base reactions have been reported (Bomfim et al., 2005; Wang et al., 2008).

The title compound is a potential tridentate mono-oxime ligand. The bond lengths and angles in the molecule are within normal ranges (Allen et al., 1987). In the molecule, the dihedral angles between the central pyrazole ring and the other three benzene rings (C5—C10), (C12—C17) and (C18—C23) are 40.02 (3)°, 77.51 (5)° and 55.72 (3)°, respectively.

In the crystal, a strong intramolecular N3—H3···O1 hydrogen bond forms a six-membered ring, producing a S(6) ring motif (Table 1, Fig. 1). A weak intermolecular C26—H26C···N4 interacation with the graph-set motif of R22(8) (Bernstein et al., 1995) and C9—H9···O1 hydrogen bonds, link each molecule to three others, forming an infinite two-dimensional supramolecular structure along the diagonal of the unit cell (Table 1, Fig. 2).

Related literature top

For background to 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone, see: Lahiri et al. (2003). For related structures, see: Bomfim et al. (2005); Wang et al. (2008). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For the synthesis, see: Rafiq et al. (2008); Zhao et al. (2009); Dong et al. (2008).

Experimental top

1-(4-Aminophenyl)ethanone O-methyl oxime (I) was prepared using 1-(4-aminophenyl)ethanone and methoxyamine (Rafiq et al., 2008; Zhao et al., 2009). The title compound was prepared according to a previously reported procedure (Dong et al., 2008). To an ethanol solution (7 ml) of (I) (164.1 mg, 1.00 mmol) was added dropwise an ethanol solution (7 ml) of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (278.3 mg,1.00 mmol). The mixture was stirred at 333–338 K for 24 h. The solvent was removed under reduced pressure and the residue was recrystallized from ethanol to give the title compound. Yield, 68.9%. m. p. 454–456 K. Anal. Calcd. for C26H24N4O2: C, 73.56; H, 5.70; N, 13.20. Found: C,73.63; H,5.81; N,13.07.

Pale-yellow block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane at room temperature over a period of approximately one month.

Refinement top

H atoms were placed in calculated positions and non-H atoms were refined anisotropically. The remaining H atoms were treated as riding atoms with distances C—H=0.96 Å (CH3), 0.93 Å (CH), 0.86 Å (NH), while Uiso(H)=1.20 Ueq(C) for methylidyne and 1.20 Ueq(N) for imino, 1.50 Ueq(C) for methyl. The H atom attached to N atom was located in a different density map and the atomic coordinates allowed to refine freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. Intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Part of two-dimensional supramolecular structure showing intermolecular hydrogen bonds interactions (dashed lines).
4-({4-[1-(Methoxyimino)ethyl]anilino}(phenyl)methylene)-3-methyl- 2-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C26H24N4O2Z = 2
Mr = 424.49F(000) = 448
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Melting point = 454–456 K
a = 7.3550 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1609 (13) ÅCell parameters from 1018 reflections
c = 14.9700 (12) Åθ = 2.9–22.3°
α = 68.536 (1)°µ = 0.08 mm1
β = 76.654 (2)°T = 298 K
γ = 76.182 (2)°Block-like, yellow
V = 1096.46 (18) Å30.50 × 0.49 × 0.10 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3781 independent reflections
Radiation source: fine-focus sealed tube1861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.960, Tmax = 0.992k = 1313
5654 measured reflectionsl = 1217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.246 w = 1/[σ2(Fo2) + (0.1078P)2 + 0.3814P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3781 reflectionsΔρmax = 0.24 e Å3
290 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (5)
Crystal data top
C26H24N4O2γ = 76.182 (2)°
Mr = 424.49V = 1096.46 (18) Å3
Triclinic, P1Z = 2
a = 7.3550 (6) ÅMo Kα radiation
b = 11.1609 (13) ŵ = 0.08 mm1
c = 14.9700 (12) ÅT = 298 K
α = 68.536 (1)°0.50 × 0.49 × 0.10 mm
β = 76.654 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3781 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1861 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.037
5654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3781 reflectionsΔρmin = 0.26 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5909 (5)0.6071 (3)0.1299 (3)0.0443 (10)
N20.6863 (5)0.5101 (4)0.0891 (3)0.0476 (10)
N30.1377 (5)0.4355 (4)0.2977 (3)0.0498 (11)
H30.16050.50470.30250.060*
N40.5909 (6)0.1833 (5)0.5239 (3)0.0646 (13)
O10.3193 (4)0.6395 (3)0.2404 (2)0.0505 (9)
O20.7474 (6)0.1375 (4)0.5927 (3)0.0817 (13)
C10.4246 (6)0.5767 (4)0.1894 (3)0.0403 (11)
C20.4103 (6)0.4552 (4)0.1810 (3)0.0384 (11)
C30.5784 (7)0.4221 (4)0.1177 (3)0.0449 (12)
C40.6428 (7)0.3052 (5)0.0868 (4)0.0602 (15)
H4A0.76600.30940.04770.090*
H4B0.55480.30220.04950.090*
H4C0.64940.22810.14310.090*
C50.6829 (6)0.7119 (4)0.1179 (3)0.0406 (11)
C60.5761 (7)0.8342 (5)0.1089 (4)0.0532 (13)
H60.44700.84890.10690.064*
C70.6606 (8)0.9334 (5)0.1030 (4)0.0600 (15)
H70.58801.01550.09830.072*
C80.8494 (8)0.9141 (6)0.1040 (4)0.0665 (16)
H80.90600.98250.09980.080*
C90.9571 (7)0.7925 (6)0.1112 (4)0.0654 (16)
H91.08690.77920.11110.078*
C100.8737 (7)0.6911 (5)0.1184 (4)0.0533 (14)
H100.94610.60890.12370.064*
C110.2609 (6)0.3874 (4)0.2346 (3)0.0401 (11)
C120.2423 (6)0.2628 (4)0.2279 (3)0.0422 (12)
C130.2792 (7)0.1492 (5)0.3045 (4)0.0532 (13)
H130.31710.15170.35880.064*
C140.2592 (7)0.0319 (5)0.2996 (4)0.0610 (15)
H140.28620.04470.35060.073*
C150.2010 (7)0.0263 (5)0.2221 (4)0.0613 (15)
H150.18530.05290.22020.074*
C160.1653 (7)0.1410 (5)0.1456 (4)0.0598 (15)
H160.12510.13850.09190.072*
C170.1881 (6)0.2558 (5)0.1483 (4)0.0500 (13)
H170.16680.33130.09550.060*
C180.0273 (6)0.3889 (4)0.3586 (3)0.0408 (11)
C190.0580 (7)0.3782 (5)0.4543 (4)0.0500 (13)
H190.03280.39670.47920.060*
C200.2214 (6)0.3404 (4)0.5147 (4)0.0488 (13)
H200.24080.33500.57960.059*
C210.3560 (6)0.3105 (4)0.4794 (3)0.0426 (12)
C220.3236 (6)0.3217 (4)0.3821 (3)0.0448 (12)
H220.41280.30120.35740.054*
C230.1635 (6)0.3622 (4)0.3211 (4)0.0467 (12)
H230.14630.37170.25550.056*
C240.5294 (6)0.2642 (4)0.5452 (4)0.0460 (12)
C250.6082 (7)0.3043 (6)0.6314 (4)0.0646 (15)
H25A0.73910.29440.65100.097*
H25B0.59830.39410.61610.097*
H25C0.53870.25060.68330.097*
C260.7905 (10)0.0306 (7)0.5759 (6)0.111 (3)
H26A0.89270.06110.53880.166*
H26B0.82710.03360.63700.166*
H26C0.68060.00790.54040.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.051 (2)0.042 (2)0.044 (2)0.0190 (19)0.000 (2)0.0154 (19)
N20.050 (2)0.053 (2)0.041 (3)0.017 (2)0.002 (2)0.017 (2)
N30.051 (2)0.051 (2)0.054 (3)0.027 (2)0.005 (2)0.021 (2)
N40.053 (3)0.090 (3)0.056 (3)0.038 (2)0.022 (2)0.031 (3)
O10.048 (2)0.055 (2)0.054 (2)0.0193 (16)0.0039 (17)0.0249 (18)
O20.076 (3)0.091 (3)0.077 (3)0.041 (2)0.017 (2)0.028 (2)
C10.043 (3)0.051 (3)0.032 (3)0.019 (2)0.005 (2)0.014 (2)
C20.043 (3)0.043 (3)0.031 (3)0.017 (2)0.002 (2)0.011 (2)
C30.051 (3)0.050 (3)0.039 (3)0.018 (2)0.005 (2)0.015 (2)
C40.060 (3)0.059 (3)0.067 (4)0.020 (3)0.004 (3)0.029 (3)
C50.042 (3)0.044 (3)0.035 (3)0.017 (2)0.000 (2)0.008 (2)
C60.046 (3)0.056 (3)0.056 (3)0.019 (3)0.001 (3)0.015 (3)
C70.064 (4)0.056 (3)0.061 (4)0.024 (3)0.012 (3)0.025 (3)
C80.077 (4)0.074 (4)0.062 (4)0.045 (3)0.002 (3)0.025 (3)
C90.047 (3)0.078 (4)0.071 (4)0.029 (3)0.007 (3)0.014 (3)
C100.045 (3)0.050 (3)0.060 (4)0.014 (2)0.011 (3)0.006 (3)
C110.048 (3)0.041 (3)0.035 (3)0.007 (2)0.012 (2)0.014 (2)
C120.043 (3)0.047 (3)0.039 (3)0.018 (2)0.004 (2)0.011 (2)
C130.057 (3)0.053 (3)0.048 (3)0.009 (2)0.019 (3)0.009 (3)
C140.072 (4)0.038 (3)0.064 (4)0.010 (3)0.017 (3)0.004 (3)
C150.064 (3)0.057 (3)0.067 (4)0.026 (3)0.010 (3)0.028 (3)
C160.072 (4)0.072 (4)0.053 (4)0.036 (3)0.001 (3)0.033 (3)
C170.057 (3)0.057 (3)0.039 (3)0.021 (2)0.005 (2)0.013 (2)
C180.048 (3)0.037 (2)0.041 (3)0.018 (2)0.002 (2)0.013 (2)
C190.054 (3)0.062 (3)0.045 (3)0.022 (3)0.007 (3)0.024 (3)
C200.054 (3)0.058 (3)0.038 (3)0.018 (2)0.002 (2)0.018 (2)
C210.049 (3)0.036 (2)0.039 (3)0.010 (2)0.006 (2)0.008 (2)
C220.049 (3)0.051 (3)0.039 (3)0.020 (2)0.007 (2)0.013 (2)
C230.055 (3)0.056 (3)0.033 (3)0.018 (2)0.008 (2)0.013 (2)
C240.051 (3)0.045 (3)0.039 (3)0.012 (2)0.005 (2)0.009 (2)
C250.065 (4)0.077 (4)0.047 (4)0.016 (3)0.001 (3)0.018 (3)
C260.113 (6)0.106 (5)0.127 (7)0.073 (5)0.034 (5)0.052 (5)
Geometric parameters (Å, º) top
N1—C11.371 (5)C12—C171.374 (6)
N1—N21.401 (5)C12—C131.383 (6)
N1—C51.424 (5)C13—C141.381 (7)
N2—C31.298 (5)C13—H130.9300
N3—C111.321 (6)C14—C151.352 (8)
N3—C181.421 (5)C14—H140.9300
N3—H30.8600C15—C161.387 (7)
N4—C241.263 (6)C15—H150.9300
N4—O21.412 (5)C16—C171.348 (6)
O1—C11.239 (5)C16—H160.9300
O2—C261.423 (7)C17—H170.9300
C1—C21.436 (6)C18—C191.361 (6)
C2—C111.403 (6)C18—C231.390 (6)
C2—C31.435 (6)C19—C201.379 (6)
C3—C41.479 (7)C19—H190.9300
C4—H4A0.9600C20—C211.378 (6)
C4—H4B0.9600C20—H200.9300
C4—H4C0.9600C21—C221.383 (6)
C5—C101.368 (6)C21—C241.492 (6)
C5—C61.379 (6)C22—C231.371 (6)
C6—C71.360 (6)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.356 (7)C24—C251.467 (7)
C7—H70.9300C25—H25A0.9600
C8—C91.378 (8)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C101.371 (7)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—H100.9300C26—H26C0.9600
C11—C121.470 (6)
C1—N1—N2112.5 (3)C14—C13—C12119.4 (5)
C1—N1—C5127.5 (4)C14—C13—H13120.3
N2—N1—C5119.3 (4)C12—C13—H13120.3
C3—N2—N1106.5 (4)C15—C14—C13121.3 (5)
C11—N3—C18129.1 (4)C15—C14—H14119.4
C11—N3—H3115.4C13—C14—H14119.4
C18—N3—H3115.4C14—C15—C16118.7 (5)
C24—N4—O2111.5 (4)C14—C15—H15120.6
N4—O2—C26109.4 (5)C16—C15—H15120.6
O1—C1—N1126.3 (4)C17—C16—C15120.8 (5)
O1—C1—C2129.8 (4)C17—C16—H16119.6
N1—C1—C2103.8 (4)C15—C16—H16119.6
C11—C2—C3131.8 (4)C16—C17—C12120.8 (5)
C11—C2—C1121.9 (4)C16—C17—H17119.6
C3—C2—C1106.1 (4)C12—C17—H17119.6
N2—C3—C2111.0 (4)C19—C18—C23119.5 (4)
N2—C3—C4119.2 (4)C19—C18—N3119.2 (4)
C2—C3—C4129.8 (4)C23—C18—N3121.2 (4)
C3—C4—H4A109.5C18—C19—C20121.1 (4)
C3—C4—H4B109.5C18—C19—H19119.5
H4A—C4—H4B109.5C20—C19—H19119.5
C3—C4—H4C109.5C21—C20—C19120.3 (5)
H4A—C4—H4C109.5C21—C20—H20119.9
H4B—C4—H4C109.5C19—C20—H20119.9
C10—C5—C6120.2 (4)C20—C21—C22118.2 (4)
C10—C5—N1120.6 (4)C20—C21—C24120.6 (4)
C6—C5—N1119.1 (4)C22—C21—C24121.1 (4)
C7—C6—C5119.7 (5)C23—C22—C21121.8 (4)
C7—C6—H6120.2C23—C22—H22119.1
C5—C6—H6120.2C21—C22—H22119.1
C8—C7—C6120.8 (5)C22—C23—C18119.1 (4)
C8—C7—H7119.6C22—C23—H23120.4
C6—C7—H7119.6C18—C23—H23120.4
C7—C8—C9119.6 (5)N4—C24—C25124.5 (4)
C7—C8—H8120.2N4—C24—C21114.6 (4)
C9—C8—H8120.2C25—C24—C21120.7 (4)
C10—C9—C8120.3 (5)C24—C25—H25A109.5
C10—C9—H9119.9C24—C25—H25B109.5
C8—C9—H9119.9H25A—C25—H25B109.5
C5—C10—C9119.4 (5)C24—C25—H25C109.5
C5—C10—H10120.3H25A—C25—H25C109.5
C9—C10—H10120.3H25B—C25—H25C109.5
N3—C11—C2117.6 (4)O2—C26—H26A109.5
N3—C11—C12119.0 (4)O2—C26—H26B109.5
C2—C11—C12123.3 (4)H26A—C26—H26B109.5
C17—C12—C13119.0 (4)O2—C26—H26C109.5
C17—C12—C11122.1 (4)H26A—C26—H26C109.5
C13—C12—C11118.9 (4)H26B—C26—H26C109.5
C1—N1—N2—C33.3 (5)C3—C2—C11—C125.7 (7)
C5—N1—N2—C3174.7 (4)C1—C2—C11—C12179.8 (4)
C24—N4—O2—C26169.8 (5)N3—C11—C12—C17110.5 (5)
N2—N1—C1—O1174.2 (4)C2—C11—C12—C1773.3 (6)
C5—N1—C1—O13.7 (7)N3—C11—C12—C1369.0 (6)
N2—N1—C1—C23.2 (5)C2—C11—C12—C13107.2 (5)
C5—N1—C1—C2173.8 (4)C17—C12—C13—C140.6 (7)
O1—C1—C2—C110.1 (7)C11—C12—C13—C14179.0 (4)
N1—C1—C2—C11177.4 (4)C12—C13—C14—C151.2 (8)
O1—C1—C2—C3175.3 (5)C13—C14—C15—C161.4 (8)
N1—C1—C2—C31.9 (5)C14—C15—C16—C170.0 (8)
N1—N2—C3—C21.8 (5)C15—C16—C17—C121.8 (8)
N1—N2—C3—C4179.4 (4)C13—C12—C17—C162.0 (7)
C11—C2—C3—N2174.9 (4)C11—C12—C17—C16177.5 (4)
C1—C2—C3—N20.1 (5)C11—N3—C18—C19132.8 (5)
C11—C2—C3—C42.3 (8)C11—N3—C18—C2351.4 (7)
C1—C2—C3—C4177.1 (5)C23—C18—C19—C200.5 (7)
C1—N1—C5—C10133.8 (5)N3—C18—C19—C20176.3 (4)
N2—N1—C5—C1036.2 (6)C18—C19—C20—C211.1 (7)
C1—N1—C5—C644.1 (7)C19—C20—C21—C221.1 (7)
N2—N1—C5—C6145.9 (4)C19—C20—C21—C24177.4 (4)
C10—C5—C6—C71.6 (8)C20—C21—C22—C230.5 (7)
N1—C5—C6—C7176.2 (5)C24—C21—C22—C23179.0 (4)
C5—C6—C7—C81.3 (8)C21—C22—C23—C182.0 (7)
C6—C7—C8—C90.1 (9)C19—C18—C23—C222.0 (7)
C7—C8—C9—C100.7 (9)N3—C18—C23—C22177.8 (4)
C6—C5—C10—C90.8 (8)O2—N4—C24—C250.9 (7)
N1—C5—C10—C9177.0 (5)O2—N4—C24—C21176.2 (4)
C8—C9—C10—C50.4 (9)C20—C21—C24—N4146.8 (5)
C18—N3—C11—C2178.2 (4)C22—C21—C24—N431.6 (7)
C18—N3—C11—C125.4 (7)C20—C21—C24—C2528.7 (7)
C3—C2—C11—N3170.6 (5)C22—C21—C24—C25152.9 (5)
C1—C2—C11—N33.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.952.683 (4)142
C26—H26C···N4i0.962.723.643 (9)163
C9—H9···O1ii0.932.673.398 (6)135
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H24N4O2
Mr424.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3550 (6), 11.1609 (13), 14.9700 (12)
α, β, γ (°)68.536 (1), 76.654 (2), 76.182 (2)
V3)1096.46 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.49 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5654, 3781, 1861
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.246, 1.03
No. of reflections3781
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.952.683 (4)142.3
C26—H26C···N4i0.962.723.643 (9)162.8
C9—H9···O1ii0.932.673.398 (6)135.3
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLahiri, S., Wu, X. L., Yang, W. F., Xu, Y. B. & Yuan, S. G. (2003). J. Radioanal. Nucl. Chem. 257, 431–432.  Web of Science CrossRef CAS Google Scholar
First citationRafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J.-S., Jiang, Y.-L., Dong, W.-K., Xu, L. & Kong, A.-P. (2008). Acta Cryst. E64, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3122-o3123
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds