metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ-1,4-bis­­(imidazol-1-yl)butane]di­cyanato­cadmium(II)]

aScience College, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: xzhu@cauc.edu.cn

(Received 16 October 2009; accepted 20 October 2009; online 4 November 2009)

The coordination geometry of the CdII atom in the title complex, [Cd(NCO)2(C10H14N4)2]n or [Cd(NCO)2(bimb)2]n, where bimb is 1,4-bis­(imidazol-1-yl)butane, is distorted octa­hedral with the CdII atom located on an inversion center and connected to four N atoms from the imidazole units of four symmetry-related bimb ligands and two O atoms from two symmetry-related NCO ligands. The CdII atoms are bridged by four bimb ligands, forming a two-dimensional (4,4) network.

Related literature

For the synthesis and structure of 1,4-bis­(imidazol-1-yl)butane (bimb) complexes, see: Duncan et al. (1996[Duncan, P. C. M., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1996). Chem. Commun. pp. 2127-2128.]); Ma et al. (2000[Ma, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403-2407.]); Yang et al. (2005[Yang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174-2180.]); Zhang et al. (2008[Zhang, Y. M., Wang, L. Y., Li, B. L., Yang, J. H. & Zhang, Y. (2008). J. Mol. Struct. 875, 527-529.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCO)2(C10H14N4)2]

  • Mr = 576.94

  • Monoclinic, P 21 /c

  • a = 7.7760 (14) Å

  • b = 18.156 (3) Å

  • c = 9.0983 (16) Å

  • β = 112.776 (3)°

  • V = 1184.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 153 K

  • 0.45 × 0.35 × 0.30 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.671, Tmax = 0.761

  • 11270 measured reflections

  • 2163 independent reflections

  • 2066 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.03

  • 2163 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N5 2.329 (2)
Cd1—N2 2.3276 (15)
Cd1—N4i 2.3800 (16)
N5—Cd1—N2 88.27 (6)
N5—Cd1—N4i 87.83 (6)
N2—Cd1—N4ii 90.51 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination environment of the CdII atom in the title compound is shown in Fig. 1. Each CdII atom is situated at the center of the symmetry. The coordination geometry of the CdII atom is distorted octahedral, with the metal center coordinated equatorially by four nitrogen atoms from four symmetry-related bimb ligands [Cd1—N2, 2.3276 (15) Å; Cd1—N4 2.3800 (16) Å], and axially by two nitrogen atoms from two cyanate anions [Cd1—N5 2.329 (2) Å]. Each bimb molecule exhibits the all-anti conformation of the tetramethylene linker. The torsion angles N1—C1—C2—C3, C1—C2—C3—C4 and C2—C3—C4—N3 are -166.64 (16), -173.74 (17) and 177.00 (16)°, respectively. The dihedral angle between the two imidazole rings in the ligand planes is 51.15 (8)°. Each CdII atom is bridged by four bimb ligands to form a neutral two-dimensional (4,4) network (Fig. 2). The networks contain square grids (44-membered ring), with a CdII atom at each corner and a bimb molecule at each edge connecting two CdII atoms. The edge lengths are 13.8184 (14) Å, which is obviously longer than the corresponding Cd···Cd separation (9.0819 (2) Å) for [Cd(bimb)2(NCS)2]n in which bimb ligands show the gauche-anti-gauche conformation (Zhang et al., 2008).

The two-dimensional networks parallel to (102) are stacked in an offset fashion along the c direction. In the superposition structure, the networks are arranged in the sequence ···A—B—A—B··· mode (Fig. 3). The cyanate anions are located in the voids.

[Cd(bimb)2(NCS)2]n has an one-dimensional chain structure with double bridging bimb ligands (Zhang et al., 2008). In the present work a two-dimensional cadmium(II) coordination polymer with the (4,4) network was synthesized when cyanate anions were used instead of thiocyanate anions. The factors which play the key role in the construction of the coordination polymers are not very clear. More work is need to extend the knowledge of the coordination polymers.

Related literature top

For the synthesis and structure of 1,4-bis(imidazol-1-yl)butane (bimb) complexes, see: Duncan et al. (1996); Ma et al. (2000); Yang et al. (2005); Zhang et al. (2008).

Experimental top

A 20 ml H2O/MeOH solution (1:1 v/v) of Cd(NO3)2.4H2O (0.154 g, 0.5 mmol) was added to one leg of an "H-shaped" tube, and a 20 ml H2O/MeOH (1:1 v/v) solution of bimb (0.190 g, 1.0 mmol) and NaNCO (0.065 g, 1.0 mmol) was added to the other leg of the tube. After two weeks, the well shaped colorless single crystals 1 were obtained. Yield: 64%. Found: C, 45.67; H, 4.82; N, 24.16. Calcd. for C22H28CdN10O2 (1): C, 45.80; H, 4.89; N, 24.28%.

Refinement top

H atom were placed in idealized positions and refined as riding, with C—H distances of 0.95 (imidazole) and 0.99Å (butane), and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CoII atom in the title compound with the displacement ellipsoids at the 30% probability level. [Symmetry codes: # -x + 2, -y + 1, -z + 1; $ -x + 1, y - 1/2, -z + 3/2; * x + 1, -y + 3/2, z - 1/2]. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the two-dimensional (4,4) network of the title compound along the c direction.
[Figure 3] Fig. 3. The cell packing of the title compound.
Poly[bis[µ-1,4-bis(imidazol-1-yl)butane]dicyanatocadmium(II)] top
Crystal data top
[Cd(NCO)2(C10H14N4)2]F(000) = 588
Mr = 576.94Dx = 1.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4682 reflections
a = 7.7760 (14) Åθ = 3.1–25.4°
b = 18.156 (3) ŵ = 0.96 mm1
c = 9.0983 (16) ÅT = 153 K
β = 112.776 (3)°Block, colorless
V = 1184.4 (4) Å30.45 × 0.35 × 0.30 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2163 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 99
Tmin = 0.671, Tmax = 0.761k = 2119
11270 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.031P)2 + 0.9885P]
where P = (Fo2 + 2Fc2)/3
2163 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cd(NCO)2(C10H14N4)2]V = 1184.4 (4) Å3
Mr = 576.94Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7760 (14) ŵ = 0.96 mm1
b = 18.156 (3) ÅT = 153 K
c = 9.0983 (16) Å0.45 × 0.35 × 0.30 mm
β = 112.776 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2066 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.761Rint = 0.018
11270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2163 reflectionsΔρmin = 0.37 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.50000.50000.01448 (8)
O10.4601 (2)0.59262 (11)0.2107 (2)0.0527 (5)
N10.8341 (2)0.58976 (8)0.88528 (18)0.0175 (3)
N20.9580 (2)0.54469 (8)0.72359 (18)0.0176 (3)
N30.1518 (2)0.78895 (8)0.82212 (18)0.0192 (3)
N40.0347 (2)0.87774 (8)0.92119 (18)0.0185 (3)
N50.6775 (3)0.50356 (9)0.3636 (2)0.0261 (4)
C10.6951 (3)0.61731 (12)0.9447 (2)0.0247 (4)
H1A0.75920.64601.04350.030*
H1B0.63230.57500.97150.030*
C20.5502 (3)0.66549 (10)0.8233 (2)0.0191 (4)
H2A0.46670.63420.73560.023*
H2B0.61350.70050.77750.023*
C30.4331 (3)0.70868 (10)0.8957 (2)0.0188 (4)
H3A0.37940.67450.95140.023*
H3B0.51310.74460.97460.023*
C40.2777 (3)0.74894 (12)0.7648 (2)0.0255 (4)
H4A0.33350.78430.71300.031*
H4B0.20420.71280.68310.031*
C50.8009 (3)0.56271 (10)0.7382 (2)0.0182 (4)
H5A0.68040.55740.65620.022*
C61.0980 (3)0.56036 (10)0.8684 (2)0.0189 (4)
H6A1.22730.55280.89400.023*
C71.0241 (3)0.58814 (10)0.9689 (2)0.0201 (4)
H7A1.09020.60351.07590.024*
C80.1767 (3)0.85724 (10)0.8854 (2)0.0187 (4)
H8A0.28330.88690.90210.022*
C90.0872 (3)0.81930 (10)0.8791 (2)0.0214 (4)
H9A0.20330.81770.89100.026*
C100.0166 (3)0.76412 (11)0.8180 (2)0.0227 (4)
H10A0.07270.71770.78010.027*
C110.5754 (3)0.54682 (11)0.2911 (2)0.0210 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01502 (12)0.01346 (12)0.01762 (12)0.00031 (6)0.00926 (9)0.00038 (6)
O10.0318 (9)0.0588 (12)0.0659 (13)0.0157 (9)0.0171 (9)0.0309 (10)
N10.0191 (8)0.0189 (8)0.0164 (7)0.0038 (6)0.0088 (6)0.0004 (6)
N20.0176 (8)0.0172 (8)0.0205 (8)0.0001 (6)0.0101 (6)0.0011 (6)
N30.0209 (8)0.0190 (8)0.0181 (8)0.0066 (6)0.0081 (7)0.0010 (6)
N40.0203 (8)0.0170 (8)0.0195 (8)0.0025 (6)0.0092 (6)0.0015 (6)
N50.0176 (9)0.0289 (11)0.0310 (11)0.0048 (7)0.0084 (8)0.0031 (7)
C10.0272 (10)0.0315 (11)0.0202 (10)0.0113 (8)0.0144 (8)0.0028 (8)
C20.0199 (9)0.0192 (9)0.0199 (9)0.0027 (7)0.0097 (8)0.0016 (7)
C30.0199 (9)0.0188 (9)0.0192 (9)0.0016 (7)0.0094 (8)0.0025 (7)
C40.0300 (11)0.0276 (10)0.0221 (9)0.0113 (9)0.0136 (9)0.0003 (8)
C50.0181 (9)0.0194 (9)0.0171 (9)0.0011 (7)0.0068 (7)0.0002 (7)
C60.0149 (9)0.0180 (9)0.0225 (9)0.0010 (7)0.0060 (7)0.0016 (7)
C70.0198 (9)0.0179 (10)0.0194 (9)0.0016 (7)0.0039 (8)0.0003 (8)
C80.0199 (9)0.0191 (9)0.0179 (9)0.0023 (7)0.0081 (8)0.0023 (7)
C90.0200 (9)0.0186 (9)0.0260 (10)0.0006 (7)0.0092 (8)0.0019 (8)
C100.0238 (10)0.0154 (9)0.0267 (10)0.0011 (7)0.0073 (8)0.0010 (8)
C110.0159 (9)0.0280 (11)0.0235 (10)0.0061 (9)0.0122 (8)0.0065 (9)
Geometric parameters (Å, º) top
Cd1—N52.329 (2)C1—C21.514 (3)
Cd1—N5i2.329 (2)C1—H1A0.9900
Cd1—N22.3276 (15)C1—H1B0.9900
Cd1—N2i2.3276 (15)C2—C31.530 (2)
Cd1—N4ii2.3800 (16)C2—H2A0.9900
Cd1—N4iii2.3800 (16)C2—H2B0.9900
O1—C111.234 (3)C3—C41.516 (3)
N1—C51.353 (2)C3—H3A0.9900
N1—C71.375 (2)C3—H3B0.9900
N1—C11.471 (2)C4—H4A0.9900
N2—C51.320 (2)C4—H4B0.9900
N2—C61.375 (2)C5—H5A0.9500
N3—C81.349 (2)C6—C71.352 (3)
N3—C101.372 (3)C6—H6A0.9500
N3—C41.468 (2)C7—H7A0.9500
N4—C81.320 (2)C8—H8A0.9500
N4—C91.375 (2)C9—C101.360 (3)
N4—Cd1iv2.3800 (16)C9—H9A0.9500
N5—C111.130 (3)C10—H10A0.9500
N5—Cd1—N5i180.0C3—C2—H2A109.1
N5—Cd1—N288.27 (6)C1—C2—H2B109.1
N5i—Cd1—N291.73 (6)C3—C2—H2B109.1
N5—Cd1—N2i91.73 (6)H2A—C2—H2B107.9
N5i—Cd1—N2i88.27 (6)C4—C3—C2109.55 (15)
N2—Cd1—N2i180.000 (1)C4—C3—H3A109.8
N5—Cd1—N4ii87.83 (6)C2—C3—H3A109.8
N5i—Cd1—N4ii92.17 (6)C4—C3—H3B109.8
N2—Cd1—N4ii89.49 (5)C2—C3—H3B109.8
N2i—Cd1—N4ii90.51 (5)H3A—C3—H3B108.2
N5—Cd1—N4iii92.17 (6)N3—C4—C3113.43 (16)
N5i—Cd1—N4iii87.83 (6)N3—C4—H4A108.9
N2—Cd1—N4iii90.51 (5)C3—C4—H4A108.9
N2i—Cd1—N4iii89.49 (5)N3—C4—H4B108.9
N4ii—Cd1—N4iii180.0C3—C4—H4B108.9
C5—N1—C7107.00 (16)H4A—C4—H4B107.7
C5—N1—C1126.94 (16)N2—C5—N1111.08 (16)
C7—N1—C1126.05 (16)N2—C5—H5A124.5
C5—N2—C6105.81 (15)N1—C5—H5A124.5
C5—N2—Cd1128.51 (12)N2—C6—C7109.82 (16)
C6—N2—Cd1125.64 (12)N2—C6—H6A125.1
C8—N3—C10106.97 (16)C7—C6—H6A125.1
C8—N3—C4126.95 (17)C6—C7—N1106.29 (17)
C10—N3—C4126.07 (17)C6—C7—H7A126.9
C8—N4—C9105.44 (16)N1—C7—H7A126.9
C8—N4—Cd1iv122.73 (12)N4—C8—N3111.63 (17)
C9—N4—Cd1iv131.09 (12)N4—C8—H8A124.2
C11—N5—Cd1134.36 (15)N3—C8—H8A124.2
N1—C1—C2111.94 (15)C10—C9—N4109.78 (17)
N1—C1—H1A109.2C10—C9—H9A125.1
C2—C1—H1A109.2N4—C9—H9A125.1
N1—C1—H1B109.2C9—C10—N3106.18 (17)
C2—C1—H1B109.2C9—C10—H10A126.9
H1A—C1—H1B107.9N3—C10—H10A126.9
C1—C2—C3112.39 (15)N5—C11—O1178.3 (2)
C1—C2—H2A109.1
N5—Cd1—N2—C51.34 (16)C6—N2—C5—N10.5 (2)
N5i—Cd1—N2—C5178.66 (16)Cd1—N2—C5—N1177.22 (11)
N4ii—Cd1—N2—C589.19 (16)C7—N1—C5—N20.5 (2)
N4iii—Cd1—N2—C590.81 (16)C1—N1—C5—N2178.33 (17)
N5—Cd1—N2—C6178.67 (15)C5—N2—C6—C70.4 (2)
N5i—Cd1—N2—C61.33 (15)Cd1—N2—C6—C7177.45 (12)
N4ii—Cd1—N2—C693.49 (15)N2—C6—C7—N10.1 (2)
N4iii—Cd1—N2—C686.51 (15)C5—N1—C7—C60.2 (2)
N2—Cd1—N5—C1188.7 (2)C1—N1—C7—C6178.60 (17)
N2i—Cd1—N5—C1191.3 (2)C9—N4—C8—N30.2 (2)
N4ii—Cd1—N5—C11178.2 (2)Cd1iv—N4—C8—N3170.90 (11)
N4iii—Cd1—N5—C111.8 (2)C10—N3—C8—N40.3 (2)
C5—N1—C1—C243.3 (3)C4—N3—C8—N4178.41 (17)
C7—N1—C1—C2135.28 (19)C8—N4—C9—C100.1 (2)
N1—C1—C2—C3166.64 (16)Cd1iv—N4—C9—C10170.02 (13)
C1—C2—C3—C4173.74 (17)N4—C9—C10—N30.1 (2)
C8—N3—C4—C384.5 (2)C8—N3—C10—C90.2 (2)
C10—N3—C4—C397.0 (2)C4—N3—C10—C9178.49 (17)
C2—C3—C4—N3177.00 (16)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(NCO)2(C10H14N4)2]
Mr576.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.7760 (14), 18.156 (3), 9.0983 (16)
β (°) 112.776 (3)
V3)1184.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.45 × 0.35 × 0.30
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.671, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
11270, 2163, 2066
Rint0.018
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.03
No. of reflections2163
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N52.329 (2)Cd1—N4i2.3800 (16)
Cd1—N22.3276 (15)
N5—Cd1—N288.27 (6)N2—Cd1—N4ii90.51 (5)
N5—Cd1—N4i87.83 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the funds of the Civil Aviation University of China (grant No. 08CAUC-S03).

References

First citationDuncan, P. C. M., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1996). Chem. Commun. pp. 2127–2128.  CSD CrossRef Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403–2407.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174–2180.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Y. M., Wang, L. Y., Li, B. L., Yang, J. H. & Zhang, Y. (2008). J. Mol. Struct. 875, 527–529.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds