organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl 2,2′-[(2-hy­droxy­ethyl)aza­nedi­yl]di­acetate

aKey Laboratory of Radiopharmaceuticals, Ministry of Education, Department of Chemistry, Beijing Normal University, Xin Jie Kou Wai Street 19, 100875 Beijing, People's Republic of China
*Correspondence e-mail: hbzhang@bnu.edu.cn

(Received 21 October 2009; accepted 17 November 2009; online 21 November 2009)

In the title compound, C14H27NO5, the hydr­oxy group and one of the acetate carbonyl O atoms are linked by an intra­molecular O—H⋯O hydrogen bond, forming an eight-membered ring. This inter­action gives rise to an asymmetric mol­ecular conformation.

Related literature

For details of the synthesis, see: Williams & Rapoport (1993[Williams, M. A. & Rapoport, H. (1993). J. Org. Chem. 58, 1151-1158.]); Amedio et al. (2000[Amedio, J. C., Van Wagenen, G., Zavlin, G., Gyorkos, A. & Peterson, S. A. (2000). Synth. Commun. 30, 3755-3763.]). For possible applications of the title compound, see: Yang et al. (2007[Yang, Y., Zhang, J. X., Wang, J. J. & Zhu, L. (2007). J. Radioanal. Nucl. Chem. 273, 31-36.]).

[Scheme 1]

Experimental

Crystal data
  • C14H27NO5

  • Mr = 289.37

  • Orthorhombic, P b c a

  • a = 11.9767 (4) Å

  • b = 9.7187 (3) Å

  • c = 29.3476 (7) Å

  • V = 3416.00 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.993

  • 12339 measured reflections

  • 3958 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.02

  • 3958 reflections

  • 190 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.848 (10) 2.128 (17) 2.8658 (18) 145 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The aminodiacetate derivatives can find potential application when labeled by the novel 99mTc(CO)2(NO)2+ core to explore the 99mTc labelled radiopharmaceuticals (Yang et al., 2007). Thus, the development of aminodiacetate derivatives may lead to obtain some new imaging agents labelled by 99mTc core. Here we report the crystal structure of the title compound which can be used as a precursor in the synthesis of aminodiacetate derivatives.

The molecule of the title compound is shown in Fig. 1. The molecular conformation is to a large extentd determined by the intramolecular hydrogen bond O(5)—H(5)···O(2) (Table 1) which is a part of the eight-membered ring –O(5)—C(14)—C(13)—N(1)—C(6)—C(5)—O(2)······H(5)-. In the above ring, the torsion angles N(1)—C(13)—C(14)—O(5) and N(1)—C(6)—C(5)—O(2) are -57.2 (2)° and -3.5 (2)°.

Related literature top

For details of the synthesis, see: Williams et al. (1993); Amedio et al. (2000). For possible applications of the title compound, see: Yang et al. (2007).

Experimental top

Tert-butyl 2-bromoacetate (22 g, 114 mmol) and KHCO3 (13 g, 130 mmol) were dissolved in DMF (100 ml) at 0°C. Then 2-aminoethanol (3.2 ml, 50 mmol) was added to the solution in drops within 1 h. After adding 2-aminoethanol, the solution was heated at 55 °C for 20 h. Subsequently, the mixture was washed by the saturated NaHCO3 solution and the crude product was extracted by ethyl acetate. After that, the organic phase was washed by saturated NaCl solution and the new organic phase was then dried by Na2SO4 for 48 h. After filtering the solution, the crude product was obtained. The crude product was recrystallized from ethyl acetate giving colorless block crystals of the title compound suitable for the single-crystal X-ray diffraction. IRnfrared Spectrum: 3438.3 cm-1; 2978.5 cm-1; 2933.7 cm-1; 1456.8 cm-1; 1393.6 cm-1; 1732.0 cm-1; 1368.6 cm-1; 1223.5 cm-1; 1070.9 cm-1; 1150.5 cm-1. 1H-NMR (CDCl3, 400 MHz): 3.90 (s, 1H), 3.53 (t, J = 5.1 Hz, 2H), 3.45 (s, 4H), 2.89 (t, J = 5.1 Hz, 2H), 1.47 (s, 18H). 13C-NMR (CDCl3, 400 MHz): δ 28.13, 56.64, 57.07, 59.34, 81.49, 171.46. MS:m/z 290.3 [M + H].

Refinement top

The H atoms bound to C atoms were introduced in idealized positions (C-H = 0.96-0.97 Å) and allowed to ride on their respective parent atoms with Uiso(H) =1.2 Ueq(C). The H atom from the hydroxy group was located in a difference Fourier synthesis and in the refinement the O-H distance was restrained to 0.86 (1) Å [Uiso(H) =1.5 Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule the title compound, showing the atomic numbering; the displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of title compound (for clarity, all H atoms are not shown).
Di-tert-butyl 2,2'-[(2-hydroxyethyl)azanediyl]diacetate top
Crystal data top
C14H27NO5F(000) = 1264
Mr = 289.37Dx = 1.125 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3711 reflections
a = 11.9767 (4) Åθ = 2.2–26.1°
b = 9.7187 (3) ŵ = 0.08 mm1
c = 29.3476 (7) ÅT = 296 K
V = 3416.00 (18) Å3Block, colorless
Z = 80.36 × 0.21 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3958 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1510
Tmin = 0.970, Tmax = 0.993k = 127
12339 measured reflectionsl = 3825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.5511P]
where P = (Fo2 + 2Fc2)/3
3958 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C14H27NO5V = 3416.00 (18) Å3
Mr = 289.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.9767 (4) ŵ = 0.08 mm1
b = 9.7187 (3) ÅT = 296 K
c = 29.3476 (7) Å0.36 × 0.21 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3958 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2503 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.993Rint = 0.022
12339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.13 e Å3
3958 reflectionsΔρmin = 0.17 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52162 (16)0.1474 (2)0.74442 (6)0.0719 (5)
H1A0.57980.08760.73380.108*
H1B0.49570.11610.77360.108*
H1C0.55020.23930.74730.108*
N10.63856 (10)0.38227 (12)0.59060 (4)0.0459 (3)
O10.47237 (8)0.16745 (10)0.66460 (3)0.0480 (3)
C20.37573 (18)0.00455 (18)0.70716 (6)0.0777 (6)
H2A0.31870.00500.68420.117*
H2B0.34360.02120.73590.117*
H2C0.43270.06030.69900.117*
O20.52896 (11)0.38533 (11)0.67575 (4)0.0689 (4)
C30.33760 (16)0.2516 (2)0.72143 (7)0.0753 (5)
H3A0.37110.34110.72330.113*
H3B0.30270.22950.75000.113*
H3C0.28250.25110.69770.113*
O30.69461 (11)0.19726 (12)0.51907 (4)0.0714 (4)
C40.42619 (13)0.14629 (15)0.71095 (5)0.0473 (4)
O40.61496 (10)0.33760 (11)0.46780 (3)0.0586 (3)
C50.52554 (12)0.28259 (14)0.65316 (5)0.0459 (3)
O50.73364 (13)0.53528 (15)0.66616 (5)0.0839 (4)
H50.6636 (9)0.524 (3)0.6645 (9)0.126*
C60.58168 (13)0.26158 (15)0.60781 (5)0.0515 (4)
H6A0.63540.18730.61070.062*
H6B0.52590.23330.58580.062*
C70.61304 (14)0.41188 (16)0.54343 (5)0.0545 (4)
H7A0.64970.49720.53510.065*
H7B0.53320.42660.54070.065*
C80.64704 (13)0.30191 (16)0.50949 (5)0.0508 (4)
C90.63142 (15)0.24561 (18)0.42820 (5)0.0618 (4)
C100.56917 (19)0.1123 (2)0.43595 (8)0.0933 (7)
H10A0.60620.05990.45920.140*
H10B0.56770.06010.40820.140*
H10C0.49410.13200.44540.140*
C110.75478 (18)0.2232 (3)0.42041 (7)0.0882 (6)
H11A0.79210.31050.41920.132*
H11B0.76560.17540.39210.132*
H11C0.78500.16940.44490.132*
C120.5793 (2)0.3278 (2)0.38978 (6)0.0994 (8)
H12A0.50280.34770.39710.149*
H12B0.58240.27530.36210.149*
H12C0.61950.41230.38580.149*
C130.75774 (14)0.38686 (19)0.60054 (5)0.0614 (4)
H13A0.79210.45870.58240.074*
H13B0.79130.29990.59190.074*
C140.78138 (16)0.4137 (2)0.65010 (6)0.0750 (5)
H14A0.75320.33730.66800.090*
H14B0.86160.41800.65450.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0772 (12)0.0836 (12)0.0549 (10)0.0102 (10)0.0087 (9)0.0146 (9)
N10.0527 (7)0.0491 (7)0.0360 (6)0.0043 (6)0.0032 (5)0.0030 (5)
O10.0588 (6)0.0447 (5)0.0406 (6)0.0079 (5)0.0082 (4)0.0007 (4)
C20.1038 (14)0.0652 (11)0.0641 (11)0.0327 (11)0.0156 (10)0.0029 (9)
O20.1028 (10)0.0468 (6)0.0571 (7)0.0129 (6)0.0304 (6)0.0092 (5)
C30.0693 (11)0.0845 (13)0.0722 (12)0.0094 (10)0.0238 (10)0.0024 (10)
O30.0984 (9)0.0681 (7)0.0478 (7)0.0330 (7)0.0009 (6)0.0002 (5)
C40.0546 (8)0.0479 (8)0.0393 (8)0.0062 (7)0.0076 (7)0.0034 (6)
O40.0760 (7)0.0625 (7)0.0374 (6)0.0156 (6)0.0023 (5)0.0022 (5)
C50.0531 (8)0.0434 (8)0.0411 (8)0.0006 (7)0.0041 (7)0.0015 (6)
O50.1030 (10)0.0812 (9)0.0674 (8)0.0272 (9)0.0050 (8)0.0216 (7)
C60.0611 (9)0.0503 (8)0.0430 (8)0.0069 (7)0.0096 (7)0.0046 (7)
C70.0708 (10)0.0530 (8)0.0396 (8)0.0118 (8)0.0043 (7)0.0023 (7)
C80.0577 (9)0.0556 (9)0.0391 (8)0.0082 (8)0.0040 (7)0.0024 (7)
C90.0757 (11)0.0699 (11)0.0397 (9)0.0100 (9)0.0004 (8)0.0105 (8)
C100.1030 (16)0.0898 (15)0.0872 (16)0.0163 (13)0.0079 (13)0.0199 (12)
C110.0809 (13)0.1181 (17)0.0658 (12)0.0111 (13)0.0199 (11)0.0130 (12)
C120.146 (2)0.1065 (17)0.0456 (11)0.0351 (15)0.0202 (12)0.0077 (11)
C130.0567 (10)0.0692 (11)0.0584 (10)0.0081 (8)0.0033 (8)0.0044 (8)
C140.0693 (12)0.0905 (14)0.0653 (12)0.0131 (10)0.0139 (9)0.0023 (11)
Geometric parameters (Å, º) top
C1—C41.507 (2)O5—H50.848 (10)
C1—H1A0.9600C6—H6A0.9700
C1—H1B0.9600C6—H6B0.9700
C1—H1C0.9600C7—C81.517 (2)
N1—C71.4465 (18)C7—H7A0.9700
N1—C61.4475 (18)C7—H7B0.9700
N1—C131.458 (2)C9—C111.511 (3)
O1—C51.3306 (17)C9—C101.512 (3)
O1—C41.4830 (16)C9—C121.516 (2)
C2—C41.508 (2)C10—H10A0.9600
C2—H2A0.9600C10—H10B0.9600
C2—H2B0.9600C10—H10C0.9600
C2—H2C0.9600C11—H11A0.9600
O2—C51.1992 (17)C11—H11B0.9600
C3—C41.506 (2)C11—H11C0.9600
C3—H3A0.9600C12—H12A0.9600
C3—H3B0.9600C12—H12B0.9600
C3—H3C0.9600C12—H12C0.9600
O3—C81.1992 (17)C13—C141.504 (2)
O4—C81.3285 (17)C13—H13A0.9700
O4—C91.4794 (18)C13—H13B0.9700
C5—C61.505 (2)C14—H14A0.9700
O5—C141.394 (2)C14—H14B0.9700
C4—C1—H1A109.5N1—C7—H7B108.4
C4—C1—H1B109.5C8—C7—H7B108.4
H1A—C1—H1B109.5H7A—C7—H7B107.4
C4—C1—H1C109.5O3—C8—O4125.07 (14)
H1A—C1—H1C109.5O3—C8—C7124.84 (14)
H1B—C1—H1C109.5O4—C8—C7110.08 (13)
C7—N1—C6113.32 (12)O4—C9—C11109.66 (14)
C7—N1—C13113.11 (12)O4—C9—C10109.51 (14)
C6—N1—C13114.57 (13)C11—C9—C10112.41 (17)
C5—O1—C4121.77 (11)O4—C9—C12102.18 (14)
C4—C2—H2A109.5C11—C9—C12111.49 (17)
C4—C2—H2B109.5C10—C9—C12111.10 (17)
H2A—C2—H2B109.5C9—C10—H10A109.5
C4—C2—H2C109.5C9—C10—H10B109.5
H2A—C2—H2C109.5H10A—C10—H10B109.5
H2B—C2—H2C109.5C9—C10—H10C109.5
C4—C3—H3A109.5H10A—C10—H10C109.5
C4—C3—H3B109.5H10B—C10—H10C109.5
H3A—C3—H3B109.5C9—C11—H11A109.5
C4—C3—H3C109.5C9—C11—H11B109.5
H3A—C3—H3C109.5H11A—C11—H11B109.5
H3B—C3—H3C109.5C9—C11—H11C109.5
O1—C4—C3110.86 (12)H11A—C11—H11C109.5
O1—C4—C1108.31 (12)H11B—C11—H11C109.5
C3—C4—C1113.35 (15)C9—C12—H12A109.5
O1—C4—C2102.02 (12)C9—C12—H12B109.5
C3—C4—C2110.68 (15)H12A—C12—H12B109.5
C1—C4—C2111.02 (14)C9—C12—H12C109.5
C8—O4—C9121.82 (12)H12A—C12—H12C109.5
O2—C5—O1125.25 (13)H12B—C12—H12C109.5
O2—C5—C6125.91 (13)N1—C13—C14112.53 (14)
O1—C5—C6108.83 (12)N1—C13—H13A109.1
C14—O5—H5106.1 (19)C14—C13—H13A109.1
N1—C6—C5114.14 (12)N1—C13—H13B109.1
N1—C6—H6A108.7C14—C13—H13B109.1
C5—C6—H6A108.7H13A—C13—H13B107.8
N1—C6—H6B108.7O5—C14—C13113.37 (16)
C5—C6—H6B108.7O5—C14—H14A108.9
H6A—C6—H6B107.6C13—C14—H14A108.9
N1—C7—C8115.57 (13)O5—C14—H14B108.9
N1—C7—H7A108.4C13—C14—H14B108.9
C8—C7—H7A108.4H14A—C14—H14B107.7
C5—O1—C4—C362.24 (18)C9—O4—C8—O32.7 (2)
C5—O1—C4—C162.70 (17)C9—O4—C8—C7176.42 (14)
C5—O1—C4—C2179.88 (14)N1—C7—C8—O31.9 (2)
C4—O1—C5—O210.4 (2)N1—C7—C8—O4177.19 (13)
C4—O1—C5—C6168.74 (12)C8—O4—C9—C1163.4 (2)
C7—N1—C6—C5132.21 (13)C8—O4—C9—C1060.4 (2)
C13—N1—C6—C595.96 (16)C8—O4—C9—C12178.25 (16)
O2—C5—C6—N13.5 (2)C7—N1—C13—C14156.64 (14)
O1—C5—C6—N1177.39 (12)C6—N1—C13—C1471.43 (18)
C6—N1—C7—C862.21 (18)N1—C13—C14—O557.2 (2)
C13—N1—C7—C870.33 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.85 (1)2.13 (2)2.8658 (18)145 (2)

Experimental details

Crystal data
Chemical formulaC14H27NO5
Mr289.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.9767 (4), 9.7187 (3), 29.3476 (7)
V3)3416.00 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.970, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
12339, 3958, 2503
Rint0.022
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.02
No. of reflections3958
No. of parameters190
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.848 (10)2.128 (17)2.8658 (18)145 (2)
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20671013) and the National Basic Research Program of China (No. 2006CB500705).

References

First citationAmedio, J. C., Van Wagenen, G., Zavlin, G., Gyorkos, A. & Peterson, S. A. (2000). Synth. Commun. 30, 3755-3763.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, M. A. & Rapoport, H. (1993). J. Org. Chem. 58, 1151–1158.  CrossRef CAS Web of Science Google Scholar
First citationYang, Y., Zhang, J. X., Wang, J. J. & Zhu, L. (2007). J. Radioanal. Nucl. Chem. 273, 31–36.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds