metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1509-m1510

catena-Poly[[(6,7,9,10,17,18,20,21-octa­hydro-5,8,11,16,19,22-hexa­oxadibenzo[a,j]cyclo­octa­decene)barium]-di-μ-thio­cyanato-[thio­cyanato­diaurate(I)(AuAu)]-μ-thio­cyanato]

aDepartment of Physical Sciences, Morehead State University, Morehead, KY 40351, USA, and bDepartment of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
*Correspondence e-mail: jeanette.krause@uc.edu

(Received 14 September 2009; accepted 28 October 2009; online 4 November 2009)

In the title compound, [Au2Ba(NCS)4(C20H24O6)]n, the dithio­­cyanato­aurate(I) anion adopts a dimeric structure with an Au⋯Au distance of 3.1109 (10) Å; both AuI atoms are also bonded to two S atoms. The BaII ion adopts an irregular BaN3O6 geometry, arising from the crown ether and three adjacent thio­cyanate N atoms; the extended structure of the complex can be described as a one-dimensional coordination polymer generated by the Ba⋯N inter­actions (two on the endo side and one on the exo side of the crown ether) running parallel to the b axis, with an anti­parallel arrangement of ribbons in the unit cell.

Related literature

For further information on gold chemistry, see: Arvapally et al. (2007[Arvapally, R. K., Sinha, P., Hettiarachchi, S. R., Coker, N. L., Bedel, C. E., Patterson, H. H., Elder, R. C., Wilson, A. K. & Omary, M. A. (2007). J. Phys. Chem. 111, 10689-10699.]); Beavers et al. (2009[Beavers, C. M., Paw, U. L. & Olmstead, M. M. (2009). Acta Cryst. E65, m300-m301.]); Chen et al. (2005[Chen, J., Mohamed, A. A., Abdou, H. E., Krause Bauer, J. A., Fackler, J. P. Jr, Bruce, A. E. & Bruce, M. R. M. (2005). Chem. Commun. pp. 1575-1577.]); Coker (2003[Coker, N. L. (2003). PhD dissertation, University of Cincinnati, USA.]); Coker et al. (2004a[Coker, N. L., Krause Bauer, J. A. & Elder, R. C. (2004a). J. Am. Chem. Soc. 126, 12-13.],b[Coker, N. L., Krause Bauer, J. A. & Elder, R. C. (2004b). Acta Cryst. E60, m814-m816.], 2006[Coker, N. L., Bedel, C. E., Krause, J. A. & Elder, R. C. (2006). Acta Cryst. E62, m319-m321.]); Mohamed et al. (2003[Mohamed, A. A., Chen, J., Bruce, A. E., Bruce, M. R. M., Krause Bauer, J. A. & Hill, D. T. (2003). Inorg. Chem. 42, 2203-2205.]); Olmstead et al. (2005[Olmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048-m1050.]); Pathaneni & Desiraju (1993[Pathaneni, S. S. & Desiraju, G. R. (1993). J. Chem. Soc. Dalton Trans. pp. 319-322.]); Schwerdtferger et al. (1990[Schwerdtferger, P., Boyd, P., Burrell, A., Robinson, W. & Taylor, M. (1990). Inorg. Chem. 29, 3593-3607.]). For further information on barium macrocycles, see: Bordunov et al. (1996[Bordunov, A. V., Bradshaw, J. S., Zhang, X. X., Dalley, N. K., Kou, X. & Izatt, R. M. (1996). Inorg. Chem. 35, 7229-7240.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]); Felton et al. (2008[Felton, C. E., Harding, L. P., Jones, J. E., Kariuki, B. M., Pope, S. J. A. & Rice, C. R. (2008). Chem. Commun. pp. 6185-6187.]); Henke & Atwood (1998[Henke, K. & Atwood, D. A. (1998). Inorg. Chem. 37, 224-227.]); Masci & Thuery (2006[Masci, B. & Thuery, P. (2006). CrystEngComm, 8, 764-772.]); Metz et al. (1973[Metz, B., Moras, D. & Weiss, R. (1973). Acta Cryst. B29, 1382-1387.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Ba(NCS)4(C20H24O6)]

  • Mr = 1123.98

  • Monoclinic, P 21 /c

  • a = 17.5491 (8) Å

  • b = 12.6183 (4) Å

  • c = 15.6584 (6) Å

  • β = 110.598 (2)°

  • V = 3245.7 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 28.76 mm−1

  • T = 150 K

  • 0.14 × 0.08 × 0.01 mm

Data collection
  • Bruker SMART6000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.118, Tmax = 0.752

  • 14223 measured reflections

  • 4110 independent reflections

  • 2905 reflections with I > 2σ(I)

  • Rint = 0.069

  • θmax = 56.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.128

  • S = 0.98

  • 4110 reflections

  • 358 parameters

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Au1—S2 2.297 (4)
Au1—S1 2.305 (4)
Au2—S4 2.288 (4)
Au2—S3 2.305 (4)
Ba—N1 2.834 (14)
Ba—N2i 2.877 (13)
Ba—N3 2.774 (14)
Ba—O7 2.840 (9)
Ba—O17 2.845 (9)
Ba—O19 2.921 (12)
Ba—O9 2.927 (12)
Ba—O15 2.940 (11)
Ba—O5 2.988 (10)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The present work stems from our interest in developing gold(I)-thiocyanate complexes with interesting gold bonding motifs and luminescent properties (Coker et al., 2004a, Arvapally et al.,2007). We have shown that alkali (K+, Rb+ and Cs+) salts of bis(thiocyanato)aurate(I) (Coker et al., 2004a) crystallize as linear one-dimensional polymeric chains with Au—Au distances in the 3.0065 (5)–3.2654 (2) Å range. Bis(thiocyanato)aurate(I) complexes with NH4+ (Coker et al., 2006) and Me4N+ (Coker et al., 2004a) adopt a similar linear or nearly linear motif, respectively, with alternating sets of Au—Au distances (NH4+: 3.1794 (2), 3.2654 (2) Å; Me4N+: 3.1409 (3), 3.1723 (3) Å). In sharp contrast, the anion in [(n-Bu)4N]bis(thiocyanato)aurate(I) (Coker et al., 2004a) crystallizes as a dimer (Au—Au = 3.0700 (8) Å) while the anion in [Ph4As]bis(thiocyanato)aurate(I) (Schwerdtferger et al., 1990) and [Ph4P]bis(thiocyanato)aurate(I) (Coker, 2003) exist as monomers.

To further explore the influence of the cation on the motif adopted by the bis(thiocyanato)aurate(I) anion, we synthesized and characterized the (1,4,7,10,13,16-hexaoxacyclooctadecane)-potassium dithiocyanatoaurate(I) [1,4,7,10,13,16-hexaoxacyclooctadecane = 18-crown-6] (Coker et al., 2004b) and (18-crown-6)-caesium dithiocyanatoaurate(I) (Coker, 2003) complexes. The geometry of the [Au(SCN)2]- anion in these complexes is monomeric and analogous to the Ph4P+ and Ph4As+ salts. The extended structure can be described as a zigzag polymeric chain formed by the coordination of the N atoms of the thiocyanate via a single intermolecular interaction to the vacant coordination site on the K or Cs atoms. To extend our bonding motif investigation, complexes utilizing 6,7,9,10,17,18,20,21-octahydro-5,8,11,16,19,22-hexaoxa- dibenzo[a,j]cyclooctadecene (dbz-18-crown-6) with alkali or alkaline earth cations were studied. In the present work, the structure of the title complex, (I), is reported.

The geometry of the anion in (I) (Fig. 1) is a dimer with a Au—Au bond distance of 3.1109 (10) Å and Au—S distances falling in the 2.299 (4)–2.305 (4) Å range. The Au—Au bond distance observed in (I) is less than the sum of the van der Waals radii of 3.32 Å for a gold-gold interaction (Bondi, 1964). A Cambridge Structural Database (CSD) analysis of gold-gold interactions reported by Pathaneni & Desiraju (1993) found that distances in the range 2.6–3.4 Å can be considered to have Au—Au bonding character. Furthermore, the Au—Au and Au—S bond distances in (I) are comparable to those in the related crown complex [CH3CN-(dbz-18-crown-6-Na)]2[Au(SCN)2]2.dbz-18-crown-6.CH3CN (Au—Au = 3.0661 (4) Å, Au—S = 2.291 (2)–2.303 (2) Å (Coker, 2003). The metallomacrocyclic gold(I) thiolate cluster, [Au9(µ-dppm)4(µ-p-tc)6](PF6)3 (dppm = bis(diphenylphosphine)methane and p-tc = p-thiocresolate), is reported to have four distinct gold environments. These environments consist of (a) Au—Au phosphine bridged single bonds (3.0084 (6)–3.1439 (6) Å, (b) Au—Au sulfiur bridged single bonds (2.9950 (7)–3.1632 (6) Å, (c) Au—Au non-bridged single bonds (3.0135 (7)–3.1825 (7) Å and (d) sulfur bridged Au···Au nonbonded interactions (3.7155 (8)–3.9571 (7) Å (Chen et al., 2005). In the same vein, the PMe3 analog of the antiarthritic gold drug Auranofin, [(Me3PAu)2(µ-TATG)]NO3 (TATG = 2,3,4,6-tetraacetyl-1-thio-D-glucopyranosato) (Mohamed et al., 2003) forms a tetranuclear gold cluster with Au—Au and Au—S distances in the 3.106 (7)–3.144 (12) Å and 2.334 (3)–2.355 (3) Å range, respectively. A CSD survey (Cambridge Structural Database v5.30) (Allen, 2002) of metal-thiocyanate complexes reveals an average M—S distance of 2.39 Å (M = Pt, Pd, Ag or Au), the Au—S distances in (I) are consistent with this observation.

Alkali and alkaline earth cations have a preferred tendency to bind in a way that high coordination numbers are achieved. This characteristic makes them useful in applications where coordination- flexible ligating agents are a necessity (e.g. sequestration) (Bradshaw & Izatt, 1997). The nine-coordinate Ba atom in (I) is bound to the six oxygen atoms of the dbz-18-crown-6 (Ba—O distances range: 2.940 (9)–2.988 (10) Å) and sits 0.769 (5) Å out of the plane generated by these atoms. The remainder of the coordination sites consists of two endo side and one exo side Ba···N interaction (2.774 (14)–2.877 (13) Å). The fourth thiocyanate moiety (N4) remains uncoordinated, the nearest nonbonded distance to Ba is 4.728 (15) Å. Thus the extended structure of (I) (Fig. 2) can be described as a one-dimensional coordination polymer generated by Ba···N intermolecular interactions running parallel to the b axis, with an overall antiparallel arrangement of ribbons in the unit cell.

In contrast, [poly[triaquatetra-µ-cyanido-tetracyanidobis(1,4,10,13- tetraoxa-7,16-diazacyclo-octadecane)dibarium(II)tetragold(I) crystallizes as a coordination polymer with the [Au(CN)2]- anion in monomer, dimer and trimer environments while the barium atoms are bound to the diaza-18-crown-6 and solvent water molecules in nine and ten-coordinate geometries (Beavers et al., 2009). Reported Ba···O and Ba···N distances for this gold-cyanato complex are 2.761 (2)–2.929 (2) Å and 2.867 (3)–2.959 (3) Å, respectively. In the case of catena-poly[[diaqua(1,4,7,10,13,16-hexaoxa-cyclooctadecane)- barium(II)]-µ-cyano-[dicyano-platinum(II)]-µ-cyano], the extended structure is an alternating chain of [18-crown-6-Ba]2+ and [Pt(CN)4]2- ions bound through the N-atom of the cyano group to the Ba2+ ion (ten-coordinate geometry about Ba, Ba···N = 2.901 (2) Å and the average Ba—Ocrown and Ba—Owater distances are reported as 2.858 (17) Å and 2.883 (13) Å) (Olmstead et al., 2005). The Ba···O and Ba···N bonds in (I) are also consistent with those observed in structures such as M(TMTH2)2.nH2O (M = Ca, Sr, Ba and TMT=2,4,6-trimercaptotriazine) (Henke & Atwood, 1998) and Ba-containing macroethers, cryptands or lariat ethers, e.g. aqua-(7,16-bis((5-chloro-8-hydroxy-2-quinolinyl)methyl)-1,4,10,13- tetra-oxa-7,16-diazacyclo-octadecane)-barium dibromide (Bordunov et al., 1996), aqua-thiocyanato-crypt(222)-barium thiocyanate (Metz et al., 1973), bis(triethylammonium)diaqua- [2.2.2-crypt]-barium bis((p-tert-butyl-[3.1.3]tetrahomodioxa- calix[4[arene)-dioxo-uranium) pentahydrate (Masci & Thuery, 2006) and (8-propyl-18,21,26,29-tetraoxa-1,7,9,15,32,35-hexaazapenta-cyclo (13.8.8.43,13.06,34.010,33)pentatriaconta-3,5,10,12,32,34- hexaene)-bis(perchlorato)-barium (Felton et al., 2008.

Related literature top

For further information on gold chemistry, see: Arvapally et al. (2007); Beavers et al. (2009); Chen et al. (2005); Coker (2003); Coker et al. (2004a,b, 2006); Mohamed et al. (2003); Olmstead et al. (2005); Pathaneni & Desiraju (1993); Schwerdtferger et al. (1990). For further information on barium macrocycles, see: Bordunov et al. (1996); Bradshaw & Izatt (1997); Felton et al. (2008); Henke & Atwood (1998); Masci & Thuery (2006); Metz et al. (1973). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Reaction of barium hydroxide (1 equiv) with ammonium thiocyanate (2 eqiv) in water results in the formation of barium thiocyanate with the release of ammonia gas.

Barium bis(thiocyanato)aurate(I) was prepared following the method described by Coker et al., (2004a). (I) was prepared by the analogous method described for (18-crown-6-K)dithiocyanatoaurate(I) (Coker et al., 2004b). Diffraction quality crystals were obtained from slow diffusion of acetonitrile-diethyl ether solution at -4 °C.

Refinement top

The H-atoms were placed in calculated positions (Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å). The isotropic displacement parameters for all hydrogen atoms were defined as 1.2Ueq of the adjacent atom. The maximum residual electron-density peaks are located approximately 1 Å from the Au atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Structure of (I) showing 50% probability ellipsoids. H-atoms omitted for clarity.
[Figure 2] Fig. 2. : The one-dimensional polymer chain runs parallel to the b axis, with an antiparallel arrangement of ribbons in the unit cell. H-atoms omitted for clarity.
catena-Poly[[(6,7,9,10,17,18,20,21-octahydro-5,8,11,16,19,22- hexaoxadibenzo[a,j]cyclooctadecene)barium]-di-µ-thiocyanato- [thiocyanatodiaurate(I)(AuAu)]-µ-thiocyanato] top
Crystal data top
[Au2Ba(NCS)4(C20H24O6)]F(000) = 2088
Mr = 1123.98Dx = 2.300 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 4482 reflections
a = 17.5491 (8) Åθ = 4.4–56.9°
b = 12.6183 (4) ŵ = 28.76 mm1
c = 15.6584 (6) ÅT = 150 K
β = 110.598 (2)°Plate, pale pink
V = 3245.7 (2) Å30.14 × 0.08 × 0.01 mm
Z = 4
Data collection top
Bruker SMART6000 CCD
diffractometer
4110 independent reflections
Radiation source: fine-focus sealed tube2905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 0.92 pixels mm-1θmax = 56.9°, θmin = 2.7°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1113
Tmin = 0.118, Tmax = 0.752l = 1617
14223 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0766P)2]
where P = (Fo2 + 2Fc2)/3
4110 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Au2Ba(NCS)4(C20H24O6)]V = 3245.7 (2) Å3
Mr = 1123.98Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.5491 (8) ŵ = 28.76 mm1
b = 12.6183 (4) ÅT = 150 K
c = 15.6584 (6) Å0.14 × 0.08 × 0.01 mm
β = 110.598 (2)°
Data collection top
Bruker SMART6000 CCD
diffractometer
4110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2905 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.752Rint = 0.069
14223 measured reflectionsθmax = 56.9°
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.98Δρmax = 1.66 e Å3
4110 reflectionsΔρmin = 0.85 e Å3
358 parameters
Special details top

Experimental. A suitable crystal was mounted in a Cryo-loop with paratone-N and immediately tranferred to the goniostat bathed in a cold stream.

The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I). Note that the absorption correction parameters Tmin and Tmax also reflect beam corrections, etc. As a result, the numerical values for Tmin and Tmax may differ from expected values based solely absorption effects and crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The anisotropic displacement parameters for C7 and C20 were constrained to be equivalent to C6 and C5, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.34634 (4)0.40337 (5)0.26591 (4)0.0408 (2)
Au20.17476 (4)0.43183 (5)0.27917 (5)0.0453 (3)
S10.4056 (2)0.5186 (3)0.3851 (2)0.0433 (11)
S20.3048 (3)0.2863 (3)0.1460 (3)0.0584 (13)
S30.1241 (3)0.5265 (4)0.1450 (3)0.0635 (14)
S40.2067 (3)0.3454 (3)0.4158 (3)0.0490 (11)
C10.3550 (10)0.6284 (13)0.3434 (10)0.041 (4)
C20.2600 (10)0.1899 (13)0.1840 (11)0.047 (4)
C30.1250 (9)0.6475 (14)0.1921 (11)0.047 (4)
C40.2867 (11)0.2679 (14)0.4179 (11)0.048 (5)
N10.3197 (8)0.7081 (11)0.3177 (9)0.051 (4)
N20.2288 (8)0.1179 (10)0.2044 (9)0.047 (4)
N30.1230 (9)0.7317 (11)0.2215 (10)0.060 (4)
N40.3382 (9)0.2131 (12)0.4199 (10)0.058 (4)
Ba0.23237 (6)0.89893 (6)0.25677 (6)0.0322 (3)
O50.1978 (8)0.9218 (9)0.0567 (7)0.066 (4)
O70.3582 (6)0.9286 (7)0.1843 (6)0.036 (2)
O90.3953 (7)0.9610 (9)0.3779 (7)0.064 (3)
O150.2715 (8)0.9925 (10)0.4392 (8)0.065 (3)
O170.1095 (6)0.9937 (7)0.3111 (6)0.039 (3)
O190.0748 (7)0.9545 (9)0.1208 (7)0.064 (3)
C50.1207 (10)0.8637 (12)0.0123 (9)0.037 (3)
C60.2689 (9)0.8954 (11)0.0301 (9)0.036 (3)
H6A0.28000.81840.03710.043*
H6B0.25730.91460.03460.043*
C70.3402 (9)0.9553 (11)0.0894 (8)0.036 (3)
H7B0.38800.93890.07210.043*
H7A0.32921.03220.08060.043*
C80.4339 (9)0.9751 (12)0.2431 (9)0.041 (4)
H8A0.42741.05270.24640.049*
H8B0.47730.96140.21770.049*
C90.4576 (9)0.9277 (12)0.3375 (9)0.040 (4)
H9A0.45940.84950.33390.048*
H9B0.51220.95320.37610.048*
C100.4040 (10)0.9142 (11)0.4657 (9)0.038 (4)
C110.4680 (10)0.8473 (11)0.5139 (10)0.040 (4)
H110.51010.83160.49080.048*
C120.4694 (11)0.8042 (12)0.5956 (10)0.047 (4)
H120.51290.75890.62910.057*
C130.4087 (11)0.8263 (12)0.6286 (11)0.044 (4)
H130.41120.79780.68570.053*
C140.3448 (10)0.8886 (11)0.5806 (10)0.040 (4)
H140.30290.90130.60460.049*
C150.3385 (11)0.9342 (11)0.4980 (10)0.037 (4)
C160.2001 (10)1.0007 (13)0.4669 (11)0.050 (5)
H16B0.21451.04190.52420.061*
H16A0.18330.92890.47870.061*
C170.1299 (11)1.0539 (13)0.3941 (12)0.056 (5)
H17A0.08221.05780.41390.067*
H17B0.14531.12700.38380.067*
C180.0412 (10)1.0419 (12)0.2411 (10)0.048 (5)
H18B0.05781.10980.22120.058*
H18A0.00321.05620.26470.058*
C190.0129 (9)0.9649 (13)0.1622 (10)0.042 (4)
H19B0.00230.89480.18430.050*
H19A0.03840.99060.11620.050*
C200.0582 (10)0.8804 (11)0.0468 (9)0.037 (3)
C210.0125 (10)0.8211 (12)0.0105 (10)0.045 (4)
H210.05650.83280.03130.054*
C220.0195 (10)0.7466 (12)0.0542 (11)0.054 (5)
H220.06710.70390.07580.064*
C230.0427 (12)0.7322 (13)0.0892 (11)0.051 (5)
H230.03590.68240.13680.061*
C240.1134 (10)0.7894 (12)0.0554 (10)0.040 (4)
H240.15650.77840.07790.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0510 (5)0.0316 (4)0.0483 (4)0.0031 (3)0.0280 (4)0.0028 (3)
Au20.0490 (5)0.0377 (4)0.0535 (4)0.0027 (4)0.0235 (4)0.0008 (3)
S10.044 (3)0.043 (2)0.042 (2)0.010 (2)0.015 (2)0.0041 (19)
S20.099 (4)0.039 (2)0.053 (2)0.007 (2)0.046 (3)0.005 (2)
S30.079 (4)0.069 (3)0.049 (2)0.022 (3)0.030 (3)0.008 (2)
S40.063 (3)0.039 (2)0.054 (2)0.009 (2)0.033 (2)0.009 (2)
C10.037 (11)0.042 (9)0.048 (9)0.002 (9)0.021 (9)0.004 (8)
C20.045 (12)0.044 (10)0.056 (10)0.011 (9)0.022 (10)0.010 (9)
C30.031 (11)0.056 (11)0.056 (10)0.002 (9)0.018 (9)0.034 (10)
C40.059 (14)0.051 (11)0.048 (10)0.022 (10)0.035 (11)0.014 (9)
N10.040 (10)0.050 (9)0.059 (8)0.000 (8)0.012 (8)0.014 (7)
N20.060 (11)0.028 (7)0.053 (8)0.008 (7)0.018 (8)0.006 (6)
N30.065 (11)0.035 (8)0.079 (10)0.007 (8)0.024 (9)0.017 (8)
N40.064 (12)0.059 (10)0.064 (9)0.006 (9)0.037 (9)0.008 (8)
Ba0.0354 (6)0.0300 (5)0.0345 (5)0.0007 (4)0.0166 (4)0.0001 (4)
O50.074 (10)0.077 (9)0.045 (6)0.001 (7)0.021 (7)0.001 (6)
O70.030 (6)0.039 (6)0.041 (5)0.004 (5)0.013 (5)0.003 (5)
O90.073 (9)0.063 (8)0.064 (7)0.001 (7)0.033 (7)0.007 (6)
O150.057 (9)0.081 (9)0.065 (7)0.004 (7)0.031 (7)0.004 (7)
O170.050 (7)0.032 (5)0.046 (6)0.006 (5)0.029 (6)0.011 (5)
O190.069 (9)0.073 (8)0.060 (7)0.000 (7)0.035 (7)0.007 (7)
C50.039 (9)0.042 (6)0.028 (6)0.009 (6)0.010 (5)0.011 (5)
C60.040 (8)0.042 (6)0.036 (6)0.007 (5)0.028 (5)0.003 (5)
C70.040 (8)0.042 (6)0.036 (6)0.007 (5)0.028 (5)0.003 (5)
C80.047 (12)0.041 (9)0.046 (9)0.018 (8)0.030 (9)0.005 (8)
C90.023 (10)0.053 (10)0.047 (9)0.018 (8)0.018 (8)0.012 (8)
C100.041 (11)0.040 (9)0.032 (8)0.009 (8)0.011 (8)0.006 (8)
C110.039 (11)0.028 (8)0.048 (9)0.007 (8)0.008 (9)0.008 (8)
C120.049 (12)0.036 (9)0.043 (9)0.008 (8)0.000 (9)0.011 (8)
C130.044 (12)0.042 (10)0.043 (9)0.011 (9)0.010 (10)0.004 (8)
C140.044 (12)0.038 (9)0.044 (9)0.018 (9)0.020 (9)0.014 (8)
C150.048 (12)0.027 (8)0.043 (9)0.010 (8)0.025 (9)0.013 (7)
C160.063 (14)0.047 (10)0.058 (11)0.012 (10)0.043 (11)0.033 (9)
C170.051 (13)0.043 (10)0.094 (14)0.001 (9)0.050 (12)0.020 (10)
C180.055 (12)0.033 (9)0.053 (10)0.029 (8)0.014 (9)0.010 (8)
C190.036 (11)0.058 (10)0.043 (9)0.008 (8)0.028 (9)0.011 (8)
C200.039 (9)0.042 (6)0.028 (6)0.009 (6)0.010 (5)0.011 (5)
C210.030 (11)0.038 (9)0.052 (9)0.003 (8)0.003 (9)0.000 (8)
C220.023 (11)0.036 (10)0.075 (12)0.003 (8)0.016 (10)0.000 (9)
C230.050 (13)0.046 (10)0.048 (10)0.026 (10)0.006 (10)0.013 (9)
C240.028 (11)0.045 (9)0.046 (9)0.009 (8)0.010 (9)0.001 (8)
Geometric parameters (Å, º) top
Au1—S22.297 (4)C6—H6A0.9900
Au1—S12.305 (4)C6—H6B0.9900
Au1—Au23.1109 (10)C7—H7B0.9900
Au2—S42.288 (4)C7—H7A0.9900
Au2—S32.305 (4)C8—C91.510 (18)
S1—C11.651 (17)C8—H8A0.9900
S2—C21.668 (19)C8—H8B0.9900
S3—C31.69 (2)C9—H9A0.9900
S4—C41.70 (2)C9—H9B0.9900
C1—N11.176 (18)C10—C111.39 (2)
C2—N21.162 (19)C10—C151.43 (2)
C3—N31.16 (2)C11—C121.38 (2)
C4—N41.131 (19)C11—H110.9500
N2—Bai2.877 (13)C12—C131.37 (2)
Ba—N12.834 (14)C12—H120.9500
Ba—N2ii2.877 (13)C13—C141.36 (2)
Ba—N32.774 (14)C13—H130.9500
Ba—O72.840 (9)C14—C151.38 (2)
Ba—O172.845 (9)C14—H140.9500
Ba—O192.921 (12)C16—C171.51 (2)
Ba—O92.927 (12)C16—H16B0.9900
Ba—O152.940 (11)C16—H16A0.9900
Ba—O52.988 (10)C17—H17A0.9900
O5—C51.479 (18)C17—H17B0.9900
O5—C61.486 (17)C18—C191.51 (2)
O7—C71.446 (15)C18—H18B0.9900
O7—C81.447 (16)C18—H18A0.9900
O9—C101.454 (17)C19—H19B0.9900
O9—C91.504 (18)C19—H19A0.9900
O15—C151.418 (18)C20—C211.39 (2)
O15—C161.467 (18)C21—C221.35 (2)
O17—C171.438 (17)C21—H210.9500
O17—C181.443 (16)C22—C231.39 (2)
O19—C201.436 (18)C22—H220.9500
O19—C191.453 (17)C23—C241.37 (2)
C5—C241.388 (19)C23—H230.9500
C5—C201.40 (2)C24—H240.9500
C6—C71.477 (19)
S2—Au1—S1172.10 (16)O5—C6—H6B110.0
S2—Au1—Au295.32 (13)H6A—C6—H6B108.4
S1—Au1—Au292.58 (10)O7—C7—C6111.0 (11)
S4—Au2—S3171.03 (16)O7—C7—H7B109.4
S4—Au2—Au194.73 (11)C6—C7—H7B109.4
S3—Au2—Au194.10 (12)O7—C7—H7A109.4
C1—S1—Au1100.5 (5)C6—C7—H7A109.4
C2—S2—Au1103.4 (5)H7B—C7—H7A108.0
C3—S3—Au297.5 (5)O7—C8—C9109.7 (11)
C4—S4—Au2102.8 (6)O7—C8—H8A109.7
N1—C1—S1177.0 (14)C9—C8—H8A109.7
N2—C2—S2174.5 (14)O7—C8—H8B109.7
N3—C3—S3177.4 (16)C9—C8—H8B109.7
N4—C4—S4177.4 (16)H8A—C8—H8B108.2
C1—N1—Ba179.0 (13)O9—C9—C8108.1 (12)
C2—N2—Bai149.7 (12)O9—C9—H9A110.1
C3—N3—Ba131.2 (13)C8—C9—H9A110.1
N3—Ba—N171.0 (4)O9—C9—H9B110.1
N3—Ba—O7127.0 (4)C8—C9—H9B110.1
N1—Ba—O780.9 (3)H9A—C9—H9B108.4
N3—Ba—O1780.5 (4)C11—C10—C15120.6 (14)
N1—Ba—O17129.3 (3)C11—C10—O9123.7 (14)
O7—Ba—O17147.3 (3)C15—C10—O9115.6 (13)
N3—Ba—N2ii136.9 (4)C12—C11—C10119.2 (15)
N1—Ba—N2ii150.2 (4)C12—C11—H11120.4
O7—Ba—N2ii72.6 (3)C10—C11—H11120.4
O17—Ba—N2ii74.8 (3)C13—C12—C11120.5 (15)
N3—Ba—O1968.0 (4)C13—C12—H12119.8
N1—Ba—O19135.3 (3)C11—C12—H12119.8
O7—Ba—O19110.3 (3)C14—C13—C12120.7 (15)
O17—Ba—O1959.6 (3)C14—C13—H13119.6
N2ii—Ba—O1969.0 (4)C12—C13—H13119.6
N3—Ba—O9141.5 (4)C13—C14—C15122.4 (16)
N1—Ba—O973.8 (3)C13—C14—H14118.8
O7—Ba—O960.3 (3)C15—C14—H14118.8
O17—Ba—O9111.3 (3)C14—C15—O15126.7 (15)
N2ii—Ba—O981.1 (3)C14—C15—C10116.6 (15)
O19—Ba—O9150.1 (3)O15—C15—C10116.6 (13)
N3—Ba—O15114.1 (4)O15—C16—C17111.3 (13)
N1—Ba—O1595.8 (4)O15—C16—H16B109.4
O7—Ba—O15112.7 (3)C17—C16—H16B109.4
O17—Ba—O1558.9 (3)O15—C16—H16A109.4
N2ii—Ba—O1582.3 (3)C17—C16—H16A109.4
O19—Ba—O15116.7 (3)H16B—C16—H16A108.0
O9—Ba—O1554.7 (3)O17—C17—C16108.9 (12)
N3—Ba—O589.6 (4)O17—C17—H17A109.9
N1—Ba—O5108.7 (4)C16—C17—H17A109.9
O7—Ba—O557.9 (3)O17—C17—H17B109.9
O17—Ba—O5112.1 (3)C16—C17—H17B109.9
N2ii—Ba—O568.4 (3)H17A—C17—H17B108.3
O19—Ba—O554.6 (3)O17—C18—C19107.2 (11)
O9—Ba—O5116.4 (3)O17—C18—H18B110.3
O15—Ba—O5150.7 (3)C19—C18—H18B110.3
C5—O5—C6118.4 (11)O17—C18—H18A110.3
C5—O5—Ba105.1 (8)C19—C18—H18A110.3
C6—O5—Ba113.0 (8)H18B—C18—H18A108.5
C7—O7—C8112.3 (10)O19—C19—C18109.9 (13)
C7—O7—Ba121.4 (8)O19—C19—H19B109.7
C8—O7—Ba117.9 (7)C18—C19—H19B109.7
C10—O9—C9115.7 (12)O19—C19—H19A109.7
C10—O9—Ba105.0 (8)C18—C19—H19A109.7
C9—O9—Ba110.0 (8)H19B—C19—H19A108.2
C15—O15—C16116.4 (12)C21—C20—C5118.0 (14)
C15—O15—Ba106.3 (8)C21—C20—O19125.5 (14)
C16—O15—Ba112.6 (8)C5—C20—O19116.4 (14)
C17—O17—C18109.8 (11)C22—C21—C20120.9 (16)
C17—O17—Ba121.3 (9)C22—C21—H21119.6
C18—O17—Ba117.7 (8)C20—C21—H21119.6
C20—O19—C19116.6 (12)C21—C22—C23120.4 (16)
C20—O19—Ba107.6 (8)C21—C22—H22119.8
C19—O19—Ba111.1 (8)C23—C22—H22119.8
C24—C5—C20121.6 (15)C24—C23—C22120.5 (16)
C24—C5—O5121.1 (14)C24—C23—H23119.7
C20—C5—O5117.1 (13)C22—C23—H23119.7
C7—C6—O5108.6 (11)C23—C24—C5118.5 (16)
C7—C6—H6A110.0C23—C24—H24120.7
O5—C6—H6A110.0C5—C24—H24120.7
C7—C6—H6B110.0
S2—Au1—Au2—S4110.83 (15)C10—C11—C12—C130 (2)
S1—Au1—Au2—S469.26 (14)C11—C12—C13—C142 (2)
S2—Au1—Au2—S370.74 (16)C12—C13—C14—C151 (2)
S1—Au1—Au2—S3109.17 (16)C13—C14—C15—O15174.1 (13)
S2—Au1—S1—C1118.4 (11)C13—C14—C15—C101 (2)
Au2—Au1—S1—C160.9 (6)C16—O15—C15—C143 (2)
S1—Au1—S2—C2125.3 (11)C16—O15—C15—C10172.1 (12)
Au2—Au1—S2—C255.4 (6)C11—C10—C15—C143 (2)
S4—Au2—S3—C364.5 (13)O9—C10—C15—C14178.7 (12)
Au1—Au2—S3—C3105.4 (6)C11—C10—C15—O15172.5 (12)
S3—Au2—S4—C4167.1 (11)O9—C10—C15—O153.0 (18)
Au1—Au2—S4—C423.0 (6)C15—O15—C16—C17173.8 (12)
Au1—S1—C1—N1154 (30)C18—O17—C17—C16178.7 (13)
Au1—S2—C2—N2168 (17)O15—C16—C17—O1758.9 (16)
Au2—S3—C3—N3148 (35)C17—O17—C18—C19169.6 (12)
Au2—S4—C4—N4125 (37)C20—O19—C19—C18177.5 (11)
S1—C1—N1—Ba68 (93)O17—C18—C19—O1967.0 (15)
S2—C2—N2—Bai61 (18)C24—C5—C20—C211 (2)
S3—C3—N3—Ba115 (35)O5—C5—C20—C21175.5 (12)
C6—O5—C5—C242.7 (18)C24—C5—C20—O19176.2 (12)
C6—O5—C5—C20172.0 (12)O5—C5—C20—O191.4 (18)
C5—O5—C6—C7174.4 (11)C19—O19—C20—C212 (2)
C8—O7—C7—C6172.3 (11)C19—O19—C20—C5174.6 (12)
O5—C6—C7—O759.6 (14)C5—C20—C21—C222 (2)
C7—O7—C8—C9169.0 (11)O19—C20—C21—C22174.3 (13)
C10—O9—C9—C8174.3 (11)C20—C21—C22—C234 (2)
O7—C8—C9—O966.0 (14)C21—C22—C23—C243 (2)
C9—O9—C10—C113.7 (19)C22—C23—C24—C52 (2)
C9—O9—C10—C15171.6 (12)C20—C5—C24—C231 (2)
C15—C10—C11—C123 (2)O5—C5—C24—C23175.1 (12)
O9—C10—C11—C12178.0 (13)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Au2Ba(NCS)4(C20H24O6)]
Mr1123.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)17.5491 (8), 12.6183 (4), 15.6584 (6)
β (°) 110.598 (2)
V3)3245.7 (2)
Z4
Radiation typeCu Kα
µ (mm1)28.76
Crystal size (mm)0.14 × 0.08 × 0.01
Data collection
DiffractometerBruker SMART6000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.118, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
14223, 4110, 2905
Rint0.069
θmax (°)56.9
(sin θ/λ)max1)0.543
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 0.98
No. of reflections4110
No. of parameters358
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 0.85

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Au1—S22.297 (4)Ba—O72.840 (9)
Au1—S12.305 (4)Ba—O172.845 (9)
Au2—S42.288 (4)Ba—O192.921 (12)
Au2—S32.305 (4)Ba—O92.927 (12)
Ba—N12.834 (14)Ba—O152.940 (11)
Ba—N2i2.877 (13)Ba—O52.988 (10)
Ba—N32.774 (14)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Funding for the SMART6000 diffractometer through NSF–MRI grant CHE-0215950 is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArvapally, R. K., Sinha, P., Hettiarachchi, S. R., Coker, N. L., Bedel, C. E., Patterson, H. H., Elder, R. C., Wilson, A. K. & Omary, M. A. (2007). J. Phys. Chem. 111, 10689–10699.  CAS Google Scholar
First citationBeavers, C. M., Paw, U. L. & Olmstead, M. M. (2009). Acta Cryst. E65, m300–m301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBordunov, A. V., Bradshaw, J. S., Zhang, X. X., Dalley, N. K., Kou, X. & Izatt, R. M. (1996). Inorg. Chem. 35, 7229–7240.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Mohamed, A. A., Abdou, H. E., Krause Bauer, J. A., Fackler, J. P. Jr, Bruce, A. E. & Bruce, M. R. M. (2005). Chem. Commun. pp. 1575–1577.  Web of Science CrossRef Google Scholar
First citationCoker, N. L. (2003). PhD dissertation, University of Cincinnati, USA.  Google Scholar
First citationCoker, N. L., Bedel, C. E., Krause, J. A. & Elder, R. C. (2006). Acta Cryst. E62, m319–m321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoker, N. L., Krause Bauer, J. A. & Elder, R. C. (2004a). J. Am. Chem. Soc. 126, 12–13.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoker, N. L., Krause Bauer, J. A. & Elder, R. C. (2004b). Acta Cryst. E60, m814–m816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFelton, C. E., Harding, L. P., Jones, J. E., Kariuki, B. M., Pope, S. J. A. & Rice, C. R. (2008). Chem. Commun. pp. 6185–6187.  Web of Science CSD CrossRef Google Scholar
First citationHenke, K. & Atwood, D. A. (1998). Inorg. Chem. 37, 224–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasci, B. & Thuery, P. (2006). CrystEngComm, 8, 764–772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetz, B., Moras, D. & Weiss, R. (1973). Acta Cryst. B29, 1382–1387.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMohamed, A. A., Chen, J., Bruce, A. E., Bruce, M. R. M., Krause Bauer, J. A. & Hill, D. T. (2003). Inorg. Chem. 42, 2203–2205.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOlmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPathaneni, S. S. & Desiraju, G. R. (1993). J. Chem. Soc. Dalton Trans. pp. 319–322.  CrossRef Web of Science Google Scholar
First citationSchwerdtferger, P., Boyd, P., Burrell, A., Robinson, W. & Taylor, M. (1990). Inorg. Chem. 29, 3593–3607.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1509-m1510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds