metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi-1H-imidazole-κ2N3,N3′)bis­­(4-methyl­benzoato-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China
*Correspondence e-mail: zhouhui@163.com

(Received 5 October 2009; accepted 24 October 2009; online 4 November 2009)

In title compound, [Cu(C8H7O2)2(C6H6N4)2], the CuII atom (site symmetry [\overline{1}]) is coordinated by two N,N′-bidentate 2,2′-biimidazole ligands and two weakly bonded 4-methyl­benzoate anions, resulting in a strongly elongated trans-CuO2N4 octa­hedral geometry. In the crystal, adjacent mol­ecules are linked via pairs of N—H⋯O hydrogen bonds into chains propagating in [010].

Related literature

For a related structure, see: Yang et al. (2009[Yang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). CrystEngComm, 11, 1114-1121.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)2(C6H6N4)2]

  • Mr = 602.11

  • Monoclinic, P 21 /n

  • a = 12.2839 (9) Å

  • b = 7.3150 (5) Å

  • c = 14.9755 (11) Å

  • β = 93.673 (1)°

  • V = 1342.89 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.881

  • 6459 measured reflections

  • 2611 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 1.02

  • 2611 reflections

  • 196 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 2.012 (2)
Cu1—N1 2.021 (2)
Cu1—O2 2.685 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.890 (10) 1.755 (11) 2.644 (3) 178 (3)
N2—H2A⋯O2i 0.894 (10) 1.755 (11) 2.647 (3) 176 (3)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

2,2'-Biimidazole is an interesting ligand because it has two N atoms and two –NH donors. Both N-donors having the stronger coordination ability and flexible coordination modes. Additionally, two –NH donors can interact with other hydrogen bonding acceptors via hydrogen bonds (Yang et al., 2009). Herein, we report the title compound of bis(4-methyl-benzenecarboxylate-kN)bis(2,2'-biimidazole-N,N') copper, (I).

In the symmetric unit of (I), Cu2+ having an inversion centre was chelated by two 2,2'-biimidazole ligands through and weakly interacts with two 4-methyl benzenecarboxylate ligands acting as monodentate, which results in a elongated octahedron (Cu1—N1 2.021 (2) Å; Cu1—N3 2.012 (2) Å; Cu1—O2 2.685 (2) Å). Adjacent two Cu(C8H7O2)(C6H3N4) units are linked together by two pairs of N—H···O hydrogen bonds forming two R22(9) motifs, which are further arranged into a one-dimensional chain along the [010] direction.

Related literature top

For a related structure, see: Yang et al. (2009).

Experimental top

CuCl2.2H2O (0.17 g, 1.0 mmol) was added into an aqueous solution (15 ml) of 4-methyl-benzenecarboxylic acid (0.14 g, 1.0 mmol) and NaOH (0.04 g, 1.0 mmol) and refluxed for 30 min. Then an ethanol solution (10 ml) containing 2,2'-biimidazole (0.13 g, 1.0 mmol) was slowly added with continuous stirring. The resulting solution was refluxed for 3 h, filtered and kept for crystallization. After nine days, blue blocks of (I) were obtained.

Refinement top

H atoms bonded to N are located in a difference maps and refined isotropically 0.89 (1) for N—H using DFIX commands. All the remaining H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) and were refined as riding with Uiso(H) =1.2Ueq(C) (aromatic) and 1.5Ueq(C) (methyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H-bonds are shown as dashed lines. Unlabeled atoms are related to labeled atoms by the symmetry transformation (2 - x, 2 - y, -z).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional chain along the [010] direction. Weak contacts and hydrogen bonds are shown as thick and thin dashed lines, respectively. H atoms not involved in the hydrogen bonds have been omitted for the clarity.
Bis(2,2'-bi-1H-imidazole-κ2N3,N3')bis(4- methylbenzoato-κO)copper(II) top
Crystal data top
[Cu(C8H7O2)2(C6H6N4)2]F(000) = 622
Mr = 602.11Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1035 reflections
a = 12.2839 (9) Åθ = 2.7–22.3°
b = 7.3150 (5) ŵ = 0.87 mm1
c = 14.9755 (11) ÅT = 296 K
β = 93.673 (1)°Block, blue
V = 1342.89 (17) Å30.25 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1315
Tmin = 0.813, Tmax = 0.881k = 89
6459 measured reflectionsl = 1810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.305P]
where P = (Fo2 + 2Fc2)/3
2611 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C8H7O2)2(C6H6N4)2]V = 1342.89 (17) Å3
Mr = 602.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.2839 (9) ŵ = 0.87 mm1
b = 7.3150 (5) ÅT = 296 K
c = 14.9755 (11) Å0.25 × 0.18 × 0.15 mm
β = 93.673 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1807 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.881Rint = 0.043
6459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
2611 reflectionsΔρmin = 0.29 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.00000.00000.03766 (19)
N10.89630 (18)0.7883 (3)0.01223 (16)0.0349 (6)
N20.8736 (2)0.5161 (3)0.07173 (18)0.0397 (6)
H2A0.895 (3)0.410 (3)0.096 (2)0.067 (11)*
N31.09622 (18)0.8469 (3)0.08419 (16)0.0347 (6)
N41.1064 (2)0.5980 (4)0.16805 (17)0.0408 (6)
H4A1.087 (2)0.494 (3)0.193 (2)0.053 (10)*
C90.7954 (2)0.7212 (4)0.0174 (2)0.0417 (8)
H90.74540.78070.05650.050*
C100.7809 (2)0.5549 (4)0.0195 (2)0.0450 (8)
H100.71950.48090.01100.054*
C110.9395 (2)0.6593 (4)0.06569 (19)0.0333 (7)
C121.0464 (2)0.6939 (4)0.10720 (19)0.0342 (7)
C131.2008 (2)0.6939 (4)0.1851 (2)0.0478 (8)
H131.25870.66100.22490.057*
C141.1944 (2)0.8452 (4)0.1337 (2)0.0420 (8)
H141.24810.93460.13200.050*
O11.05155 (19)1.2894 (3)0.24540 (17)0.0673 (8)
O20.93115 (18)1.1925 (3)0.13825 (16)0.0527 (6)
C10.9823 (3)1.1777 (4)0.2138 (2)0.0444 (8)
C20.9573 (2)1.0140 (4)0.2697 (2)0.0379 (7)
C30.8761 (2)0.8939 (4)0.2408 (2)0.0415 (8)
H30.83840.91270.18570.050*
C40.8499 (3)0.7468 (5)0.2923 (2)0.0500 (9)
H40.79470.66760.27150.060*
C50.9039 (3)0.7145 (5)0.3741 (2)0.0506 (9)
C60.9860 (3)0.8328 (5)0.4026 (2)0.0566 (10)
H61.02420.81220.45730.068*
C71.0128 (3)0.9816 (4)0.3515 (2)0.0507 (9)
H71.06831.06020.37220.061*
C80.8718 (3)0.5549 (6)0.4308 (3)0.0838 (14)
H8A0.89920.44360.40670.126*
H8B0.79370.54850.43070.126*
H8C0.90210.57100.49100.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0373 (3)0.0273 (3)0.0474 (4)0.0028 (2)0.0042 (2)0.0112 (2)
N10.0373 (13)0.0266 (13)0.0404 (15)0.0007 (11)0.0007 (11)0.0035 (11)
N20.0399 (14)0.0276 (15)0.0512 (16)0.0012 (12)0.0003 (13)0.0073 (12)
N30.0383 (13)0.0242 (13)0.0411 (15)0.0033 (11)0.0010 (12)0.0036 (11)
N40.0411 (15)0.0313 (15)0.0488 (17)0.0016 (12)0.0071 (13)0.0134 (13)
C90.0405 (17)0.0315 (17)0.052 (2)0.0030 (14)0.0065 (15)0.0054 (14)
C100.0370 (17)0.0360 (18)0.061 (2)0.0050 (14)0.0052 (16)0.0028 (16)
C110.0381 (16)0.0254 (16)0.0364 (17)0.0013 (13)0.0039 (14)0.0040 (13)
C120.0375 (16)0.0270 (16)0.0378 (18)0.0013 (13)0.0007 (14)0.0005 (13)
C130.0412 (18)0.046 (2)0.054 (2)0.0018 (15)0.0124 (16)0.0117 (17)
C140.0429 (18)0.0359 (18)0.046 (2)0.0071 (14)0.0050 (16)0.0042 (15)
O10.0665 (16)0.0519 (16)0.0802 (19)0.0196 (13)0.0211 (14)0.0323 (14)
O20.0590 (14)0.0433 (14)0.0549 (15)0.0006 (11)0.0050 (12)0.0187 (11)
C10.0415 (18)0.0378 (19)0.054 (2)0.0051 (15)0.0002 (17)0.0120 (16)
C20.0374 (16)0.0327 (17)0.0437 (19)0.0052 (14)0.0023 (14)0.0073 (14)
C30.0453 (18)0.0395 (19)0.0392 (19)0.0028 (15)0.0010 (15)0.0092 (15)
C40.0507 (19)0.0427 (19)0.056 (2)0.0127 (16)0.0030 (17)0.0077 (17)
C50.0470 (19)0.044 (2)0.060 (2)0.0069 (16)0.0045 (17)0.0199 (17)
C60.057 (2)0.058 (2)0.053 (2)0.0043 (18)0.0108 (18)0.0261 (18)
C70.0451 (18)0.050 (2)0.055 (2)0.0119 (16)0.0118 (16)0.0160 (17)
C80.085 (3)0.078 (3)0.086 (3)0.029 (2)0.010 (2)0.045 (3)
Geometric parameters (Å, º) top
Cu1—N3i2.012 (2)C13—C141.347 (4)
Cu1—N32.012 (2)C13—H130.9300
Cu1—N1i2.021 (2)C14—H140.9300
Cu1—N12.021 (2)O1—C11.251 (4)
Cu1—O22.685 (2)O2—C11.263 (4)
Cu1—O2i2.685 (2)C1—C21.504 (4)
N1—C111.326 (3)C2—C31.378 (4)
N1—C91.380 (3)C2—C71.384 (4)
N2—C111.331 (3)C3—C41.374 (4)
N2—C101.370 (4)C3—H30.9300
N2—H2A0.894 (10)C4—C51.375 (4)
N3—C121.332 (3)C4—H40.9300
N3—C141.375 (4)C5—C61.376 (5)
N4—C121.334 (3)C5—C81.510 (4)
N4—C131.365 (4)C6—C71.382 (4)
N4—H4A0.890 (10)C6—H60.9300
C9—C101.353 (4)C7—H70.9300
C9—H90.9300C8—H8A0.9600
C10—H100.9300C8—H8B0.9600
C11—C121.439 (4)C8—H8C0.9600
N3i—Cu1—N3180.0N4—C13—H13126.3
N3i—Cu1—N1i82.25 (9)C13—C14—N3109.4 (3)
N3—Cu1—N1i97.75 (9)C13—C14—H14125.3
N3i—Cu1—N197.75 (9)N3—C14—H14125.3
N3—Cu1—N182.25 (9)O1—C1—O2124.8 (3)
N1i—Cu1—N1180.0O1—C1—C2117.9 (3)
C11—N1—C9104.9 (2)O2—C1—C2117.3 (3)
C11—N1—Cu1111.68 (18)C3—C2—C7118.3 (3)
C9—N1—Cu1143.3 (2)C3—C2—C1120.1 (3)
C11—N2—C10106.6 (3)C7—C2—C1121.5 (3)
C11—N2—H2A123 (2)C4—C3—C2120.9 (3)
C10—N2—H2A129 (2)C4—C3—H3119.5
C12—N3—C14104.7 (2)C2—C3—H3119.5
C12—N3—Cu1111.65 (18)C3—C4—C5121.2 (3)
C14—N3—Cu1143.40 (19)C3—C4—H4119.4
C12—N4—C13106.5 (2)C5—C4—H4119.4
C12—N4—H4A126 (2)C4—C5—C6118.0 (3)
C13—N4—H4A128 (2)C4—C5—C8120.3 (3)
C10—C9—N1109.2 (3)C6—C5—C8121.6 (3)
C10—C9—H9125.4C5—C6—C7121.3 (3)
N1—C9—H9125.4C5—C6—H6119.4
C9—C10—N2107.0 (3)C7—C6—H6119.4
C9—C10—H10126.5C6—C7—C2120.2 (3)
N2—C10—H10126.5C6—C7—H7119.9
N1—C11—N2112.3 (3)C2—C7—H7119.9
N1—C11—C12117.1 (2)C5—C8—H8A109.5
N2—C11—C12130.6 (3)C5—C8—H8B109.5
N3—C12—N4112.1 (2)H8A—C8—H8B109.5
N3—C12—C11117.2 (3)C5—C8—H8C109.5
N4—C12—C11130.7 (3)H8A—C8—H8C109.5
C14—C13—N4107.3 (3)H8B—C8—H8C109.5
C14—C13—H13126.3
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1ii0.89 (1)1.76 (1)2.644 (3)178 (3)
N2—H2A···O2ii0.89 (1)1.76 (1)2.647 (3)176 (3)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)2(C6H6N4)2]
Mr602.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.2839 (9), 7.3150 (5), 14.9755 (11)
β (°) 93.673 (1)
V3)1342.89 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.813, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
6459, 2611, 1807
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.02
No. of reflections2611
No. of parameters196
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N32.012 (2)Cu1—O22.685 (2)
Cu1—N12.021 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.890 (10)1.755 (11)2.644 (3)178 (3)
N2—H2A···O2i0.894 (10)1.755 (11)2.647 (3)176 (3)
Symmetry code: (i) x, y1, z.
 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). CrystEngComm, 11, 1114–1121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds