organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3009-o3010

2-Amino-5-nitro­pyridinium hydrogen selenate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 8 October 2009; accepted 15 October 2009; online 7 November 2009)

There are two cations and two anions in the asymmetric unit of the title compound, C5H6N3O2+·HSeO4. In the crystal, there are two independent chains of HSeO4 anions running along the a axis, linked by O—H⋯O hydrogen bonds. Ribbons of cations linked by N—H⋯O hydrogen bonds run along the b-axis direction, and are further hydrogen bonded to the anions by N—H⋯O and C—H⋯O links, generating a three-dimensional network.

Related literature

For related structures of 2-amino-5-nitro­pyridinium salts, see: Pécaut et al. (1993a,[Pécaut, J., Le Fur, Y. & Masse, R. (1993a). Acta Cryst. B49, 535-541.]b[Pécaut, J., Lévy, J. P. & Masse, R. (1993b). J. Mater. Chem. 3, 999-1003.]); Masse & Zyss (1991[Masse, R. & Zyss, J. (1991). Mol. Eng. 1, 141-152.]); Zyss et al. (1993[Zyss, J., Masse, R., Bagieu-Beucher, M. & Levy, J. P. (1993). Adv. Mater. 5, 120-124.]); Watanabe et al. (1993[Watanabe, O., Noritake, T., Hirose, Y., Okada, A. & Kurauchi, T. (1993). J. Mater. Chem. 3, 1053-1057.]); Pécaut & Masse (1994[Pécaut, J. & Masse, R. (1994). J. Mater. Chem. 4, 1851-1854.]). For hydrogen bonds, see: Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]); Steiner (1993[Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540-4547.], 1994[Steiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348-357.]). For bond lengths in related structures, see: Aakeröy et al. (1998[Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. pp. 1385-1389.]). Ferraris & Ivaldi (1984[Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1-6.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·HSeO4

  • Mr = 284.10

  • Orthorhombic, P b c a

  • a = 9.092 (3) Å

  • b = 13.416 (2) Å

  • c = 30.149 (4) Å

  • V = 3677.5 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.403, Tmax = 0.444

  • 8480 measured reflections

  • 4426 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.075

  • 2 standard reflections frequency: 120 min intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.101

  • S = 0.97

  • 4426 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 1.75 2.527 (5) 158
O8—H8⋯O7ii 0.82 1.73 2.546 (5) 173
N1—H1⋯O3 0.86 1.95 2.773 (5) 161
N2—H2A⋯O3 0.86 2.46 3.152 (6) 138
N2—H2B⋯O6 0.86 2.15 2.943 (6) 152
N2—H2B⋯O9iii 0.86 2.54 3.057 (6) 119
N4—H4⋯O5 0.86 2.01 2.769 (5) 146
N5—H5A⋯O5 0.86 2.27 2.958 (6) 137
N5—H5B⋯O1 0.86 2.02 2.833 (6) 157
N5—H5B⋯O11iv 0.86 2.56 3.016 (6) 115
C2—H2C⋯O6 0.93 2.37 3.132 (6) 139
C8—H8C⋯O4v 0.93 2.37 3.261 (6) 159
C3—H3⋯O7vi 0.93 2.41 3.202 (6) 143
C5—H5C⋯O2i 0.93 2.50 3.245 (6) 137
C5—H5C⋯O10vii 0.93 2.50 3.150 (6) 128
C7—H7⋯O1 0.93 2.52 3.228 (6) 134
C10—H10⋯O5ii 0.93 2.23 3.130 (6) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x+1, y, z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) -x+2, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 2-amino-5-nitropyridine (2 A5NP) chromophore is promising candidate for non linear optics. From this molecule, several salts having noncentrosymmetric structures were obtained: dihydrogenphosphate, dihydrogenarsenate, chloride, bromide, tartrate, and acetophosphonate of 2-amino-5-nitropyridinium (Pécaut et al., 1993a,b; Masse et al., 1991; Pécaut et al., 1993, Zyss et al., 1993; Watanabe et al., 1993; Pécaut Masse, 1994). In the framework of our systematic research on nitropyridine chromophore, we report on the new compound (C5H6N3O2)+, HSeO4- synthesized from the 2-amino-5-nitropyridine and selenic acid.

The asymmetric unit of the title compound (I) that contains two 2-amino-5-nitropyridinium cations and two hydrogen selenate anions, is shown in Fig. 1. The connection between theses independent components generate a three-dimensional supramolecular network which is stabilized by hydrogen bonds, Van Der Waals and electrostatic interactions. In fact, The two hydrogen selenate anions are connected through strong hydrogen bonds characterized by relatively short distances, from 1.73 to 1.75 A% (Table 1), to form two independent robust chains extending along a direction (Fig. 2). Both cations are arranged in ribbons and anchored onto both adjacent anionic chains via N—H···O and C—H···O hydrogen bonds. The C—H···O bonds have already been evidenced by several authors in molecular crystals; (Desiraju et al., 1991; Steiner et al., 1993 and 1994). With regards to the organic subnetwork, each 2 A5NP cation is hydrogen bonded to symmetry-equivalent 2 A5NP cation by rather long N—H···O and C—H···O bonds (with distances N2—H2B···O9 (x - 1, y, z) = 2.54A% and C5—H5C···O10 (-x + 2, -y + 1, -z + 1) = 2.50 A%) as to form ribbons running along the b axis. In the selenate chains, it is noteworthy that the O···O distances involved in hydrogen bonds (2.527 (5) to 2.546 (5) A%) are of the same order of magnitude as the O···O distances in HSeO4 (2.41 to 2.56A%); this should allow us to consider the (HSeO4-)n subnetwork as a polyanion. The geometrical features of HSeO4 entities, show that the Se—O bonds are significantly shorter [1.592 (4) to 1.623 (3) A% than the Se—OH bonds [1.690 (4) to 1.696 (4)A%], which is in accordance with the data relative to the protonated oxoanions as reported by (Ferraris et al., 1984) Bond lengths and angles of the organic cations can be regarded as normal and are comparable with values of other 2-amino-5-nitropyridinium compounds. The organic ring atoms of both independent cations are essentially planar (the deviations from least-square planes are 0.001 and 0.002 Å). The angles between the plane of the NO2 group and the pyridinium rings are 4.9 (3) and 5.8 (4)°. This distortion is evident because the oxygen atoms of the NO2 group are the seat of various types of inter-and intramolecular hydrogen bonds. Moreover, the C—NH2 (1.312 (6) and 1.315 (6)Å) and C—NO2 (1.459 (6) and 1.466 (6) Å) distances in the 2 A5NP cations are respectively shortened and lengthened with respect to the C—NH2 (1.337 (4) Å) and C—NO2 (1.429 (4) Å) observed in the 2-amino-5-nitropyridine molecular crystal (Aakeröy, et al., 1998). All the 2-amino-5-nitropyridinium cations hosted in various organic or inorganic matrices show the same changes in C—NH2 and C—NO2 distances, revealing a weak increase of π bond character in C—NH2 and a decrease in C—NO2.

Related literature top

For related structures of 2-amino-5-nitropyridinium salts, see: Pécaut et al. (1993a,b); Masse et al. (1991); Zyss et al. (1993); Watanabe et al. (1993); Pécaut & Masse (1994). For hydrogen bonds, see: Desiraju et al. (1991); Steiner et al. (1993, 1994). For bond lengths in related structures, see: Aakeröy et al. (1998). Ferraris & Ivaldi (1984).

Experimental top

The starting materials, 2-amino-5-nitropyridine (2-A5NP) and selenic acid (Aldrich, 40 wt% in H2O, 99.95%) were used as supplied. 5 mmol of selenic acid was added to a hot solution (20 ml of water and 5 ml of ethanol) of 2-A5NP (5 mmol). The mixture was cooled and slowly evaporated at room temperature for several days until it resulted in yellow prisms of (I).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Projection of (I) along the a axis.
2-Amino-5-nitropyridinium hydrogen selenate top
Crystal data top
C5H6N3O2+·HO4SeF(000) = 2240
Mr = 284.10Dx = 2.052 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.092 (3) Åθ = 9–11°
b = 13.416 (2) ŵ = 4.10 mm1
c = 30.149 (4) ÅT = 298 K
V = 3677.5 (14) Å3Prism, yellow
Z = 160.23 × 0.21 × 0.19 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2650 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.075
Graphite monochromatorθmax = 28.0°, θmin = 2.6°
Non–profiled ω scansh = 1011
Absorption correction: multi-scan
(Blessing, 1995)
k = 017
Tmin = 0.403, Tmax = 0.444l = 039
8480 measured reflections2 standard reflections every 120 min
4426 independent reflections intensity decay: 6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
4426 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C5H6N3O2+·HO4SeV = 3677.5 (14) Å3
Mr = 284.10Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 9.092 (3) ŵ = 4.10 mm1
b = 13.416 (2) ÅT = 298 K
c = 30.149 (4) Å0.23 × 0.21 × 0.19 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2650 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.075
Tmin = 0.403, Tmax = 0.4442 standard reflections every 120 min
8480 measured reflections intensity decay: 6%
4426 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.97Δρmax = 0.59 e Å3
4426 reflectionsΔρmin = 0.60 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.36683 (5)0.57372 (4)0.271792 (15)0.02983 (13)
Se20.41005 (5)0.29253 (4)0.487699 (15)0.03145 (13)
O10.3545 (5)0.2664 (4)0.43901 (12)0.0799 (15)
O20.5188 (4)0.1974 (3)0.50425 (14)0.0553 (11)
H20.59360.19630.48900.083*
O30.5015 (5)0.3935 (3)0.49155 (15)0.0644 (12)
O40.2793 (4)0.2887 (3)0.52431 (10)0.0452 (9)
O50.2967 (4)0.4638 (3)0.27541 (12)0.0459 (9)
O60.4460 (4)0.6107 (3)0.31613 (11)0.0476 (10)
O70.4741 (4)0.5824 (3)0.22931 (11)0.0554 (11)
O80.2301 (4)0.6563 (3)0.26121 (17)0.0647 (13)
H80.15030.62990.26590.097*
O91.1750 (4)0.5569 (3)0.38425 (14)0.0651 (13)
O101.1601 (4)0.5021 (3)0.45094 (14)0.0589 (11)
O110.3916 (4)0.2918 (3)0.36698 (16)0.0712 (14)
O120.3715 (4)0.3419 (4)0.29945 (16)0.0713 (13)
N10.7158 (4)0.4848 (3)0.44020 (13)0.0345 (9)
H10.66410.45870.46110.041*
N20.5007 (4)0.5204 (3)0.40355 (15)0.0420 (11)
H2A0.45290.49720.42590.050*
H2B0.45390.54300.38090.050*
N31.1047 (5)0.5295 (3)0.41618 (15)0.0419 (11)
N40.0710 (4)0.3519 (3)0.31176 (13)0.0358 (10)
H40.12370.37690.29090.043*
N50.2842 (4)0.3237 (3)0.35110 (14)0.0436 (11)
H5A0.33400.34830.32940.052*
H5B0.32880.30250.37440.052*
N60.3196 (5)0.3149 (3)0.33474 (19)0.0468 (12)
C10.6453 (5)0.5211 (3)0.40398 (16)0.0327 (11)
C20.7316 (5)0.5571 (3)0.36909 (14)0.0309 (11)
H2C0.68640.57800.34300.037*
C30.8802 (5)0.5620 (3)0.37265 (15)0.0328 (11)
H30.93740.58740.34970.039*
C40.9448 (5)0.5275 (4)0.41192 (16)0.0311 (11)
C50.8634 (5)0.4879 (4)0.44491 (16)0.0342 (11)
H5C0.90800.46320.47040.041*
C60.1403 (5)0.3185 (3)0.34854 (15)0.0305 (10)
C90.1590 (5)0.3146 (3)0.33920 (17)0.0330 (11)
C80.0953 (5)0.2830 (3)0.37952 (16)0.0341 (11)
H8C0.15410.26210.40300.041*
C70.0523 (5)0.2838 (3)0.38333 (15)0.0312 (11)
H70.09600.26110.40930.037*
C100.0746 (5)0.3482 (4)0.30600 (16)0.0356 (11)
H100.11670.36870.27940.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0236 (2)0.0403 (3)0.0256 (2)0.0052 (2)0.00113 (19)0.0015 (2)
Se20.0267 (2)0.0409 (3)0.0268 (2)0.0001 (2)0.00137 (19)0.0081 (2)
O10.061 (3)0.148 (5)0.030 (2)0.001 (3)0.006 (2)0.004 (3)
O20.035 (2)0.051 (2)0.080 (3)0.0063 (18)0.0125 (19)0.029 (2)
O30.070 (3)0.039 (2)0.084 (3)0.015 (2)0.034 (2)0.000 (2)
O40.0268 (19)0.076 (3)0.0327 (19)0.0044 (18)0.0055 (14)0.0082 (19)
O50.045 (2)0.038 (2)0.054 (2)0.0077 (17)0.0136 (18)0.0064 (18)
O60.052 (2)0.061 (3)0.0296 (19)0.007 (2)0.0080 (17)0.0101 (18)
O70.035 (2)0.100 (3)0.0312 (19)0.023 (2)0.0111 (16)0.006 (2)
O80.029 (2)0.049 (2)0.117 (4)0.0035 (18)0.009 (2)0.025 (2)
O90.033 (2)0.105 (4)0.058 (3)0.007 (2)0.012 (2)0.002 (3)
O100.039 (2)0.075 (3)0.062 (3)0.008 (2)0.015 (2)0.004 (2)
O110.033 (2)0.086 (4)0.094 (4)0.004 (2)0.025 (2)0.012 (3)
O120.031 (2)0.093 (4)0.091 (4)0.002 (2)0.016 (2)0.016 (3)
N10.031 (2)0.041 (2)0.032 (2)0.0018 (19)0.0058 (17)0.0056 (19)
N20.025 (2)0.057 (3)0.044 (3)0.003 (2)0.0021 (18)0.007 (2)
N30.033 (3)0.046 (3)0.047 (3)0.004 (2)0.001 (2)0.007 (2)
N40.028 (2)0.050 (3)0.029 (2)0.0023 (19)0.0010 (17)0.0121 (19)
N50.031 (2)0.059 (3)0.040 (2)0.005 (2)0.0055 (18)0.008 (2)
N60.030 (2)0.032 (3)0.079 (4)0.0035 (19)0.003 (3)0.000 (2)
C10.038 (3)0.024 (2)0.036 (3)0.001 (2)0.000 (2)0.004 (2)
C20.030 (3)0.039 (3)0.024 (2)0.002 (2)0.000 (2)0.002 (2)
C30.034 (3)0.031 (3)0.033 (3)0.001 (2)0.007 (2)0.001 (2)
C40.027 (3)0.034 (3)0.033 (3)0.001 (2)0.000 (2)0.006 (2)
C50.035 (3)0.035 (3)0.032 (3)0.002 (2)0.008 (2)0.001 (2)
C60.028 (2)0.030 (3)0.034 (3)0.001 (2)0.006 (2)0.003 (2)
C90.027 (3)0.027 (3)0.046 (3)0.001 (2)0.000 (2)0.004 (2)
C80.039 (3)0.030 (3)0.033 (3)0.000 (2)0.012 (2)0.004 (2)
C70.037 (3)0.032 (3)0.024 (2)0.002 (2)0.004 (2)0.001 (2)
C100.033 (3)0.041 (3)0.034 (3)0.002 (2)0.010 (2)0.010 (2)
Geometric parameters (Å, º) top
Se1—O61.597 (3)N4—C101.337 (6)
Se1—O51.610 (3)N4—C61.352 (6)
Se1—O71.614 (3)N4—H40.8600
Se1—O81.696 (4)N5—C61.312 (6)
Se2—O11.592 (4)N5—H5A0.8600
Se2—O31.594 (4)N5—H5B0.8600
Se2—O41.623 (3)N6—C91.466 (6)
Se2—O21.690 (4)C1—C21.398 (6)
O2—H20.8200C2—C31.357 (6)
O8—H80.8200C2—H2C0.9300
O9—N31.213 (5)C3—C41.400 (6)
O10—N31.220 (5)C3—H30.9300
O11—N61.213 (6)C4—C51.349 (7)
O12—N61.219 (6)C5—H5C0.9300
N1—C51.350 (6)C6—C71.399 (6)
N1—C11.356 (6)C9—C101.339 (7)
N1—H10.8600C9—C81.412 (7)
N2—C11.315 (6)C8—C71.347 (6)
N2—H2A0.8600C8—H8C0.9300
N2—H2B0.8600C7—H70.9300
N3—C41.459 (6)C10—H100.9300
O6—Se1—O5113.95 (19)O12—N6—C9117.8 (5)
O6—Se1—O7111.69 (19)N2—C1—N1118.5 (5)
O5—Se1—O7111.02 (19)N2—C1—C2123.8 (5)
O6—Se1—O8106.5 (2)N1—C1—C2117.7 (5)
O5—Se1—O8108.74 (19)C3—C2—C1121.1 (5)
O7—Se1—O8104.3 (2)C3—C2—H2C119.5
O1—Se2—O3114.9 (3)C1—C2—H2C119.5
O1—Se2—O4112.8 (2)C2—C3—C4117.9 (4)
O3—Se2—O4111.1 (2)C2—C3—H3121.0
O1—Se2—O2107.0 (3)C4—C3—H3121.0
O3—Se2—O2108.3 (2)C5—C4—C3121.5 (4)
O4—Se2—O2101.76 (18)C5—C4—N3119.3 (4)
Se2—O2—H2109.5C3—C4—N3119.1 (4)
Se1—O8—H8109.5C4—C5—N1118.7 (4)
C5—N1—C1122.9 (4)C4—C5—H5C120.6
C5—N1—H1118.6N1—C5—H5C120.6
C1—N1—H1118.6N5—C6—N4119.7 (4)
C1—N2—H2A120.0N5—C6—C7123.0 (4)
C1—N2—H2B120.0N4—C6—C7117.3 (4)
H2A—N2—H2B120.0C10—C9—C8120.7 (4)
O9—N3—O10123.7 (5)C10—C9—N6120.0 (5)
O9—N3—C4117.4 (4)C8—C9—N6119.2 (5)
O10—N3—C4118.8 (4)C7—C8—C9118.7 (4)
C10—N4—C6123.8 (4)C7—C8—H8C120.7
C10—N4—H4118.1C9—C8—H8C120.7
C6—N4—H4118.1C8—C7—C6120.6 (4)
C6—N5—H5A120.0C8—C7—H7119.7
C6—N5—H5B120.0C6—C7—H7119.7
H5A—N5—H5B120.0N4—C10—C9118.9 (4)
O11—N6—O12124.5 (5)N4—C10—H10120.6
O11—N6—C9117.6 (5)C9—C10—H10120.6
C5—N1—C1—N2175.8 (4)C10—N4—C6—N5179.0 (5)
C5—N1—C1—C24.3 (7)C10—N4—C6—C74.0 (7)
N2—C1—C2—C3175.6 (5)O11—N6—C9—C10173.8 (5)
N1—C1—C2—C34.5 (7)O12—N6—C9—C103.5 (7)
C1—C2—C3—C41.6 (7)O11—N6—C9—C83.1 (7)
C2—C3—C4—C51.8 (7)O12—N6—C9—C8179.5 (5)
C2—C3—C4—N3178.4 (4)C10—C9—C8—C72.5 (7)
O9—N3—C4—C5173.2 (5)N6—C9—C8—C7179.5 (4)
O10—N3—C4—C55.4 (7)C9—C8—C7—C62.2 (7)
O9—N3—C4—C33.4 (7)N5—C6—C7—C8177.8 (5)
O10—N3—C4—C3177.9 (5)N4—C6—C7—C80.9 (7)
C3—C4—C5—N12.2 (7)C6—N4—C10—C93.7 (8)
N3—C4—C5—N1178.8 (4)C8—C9—C10—N40.3 (8)
C1—N1—C5—C41.0 (7)N6—C9—C10—N4176.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.752.527 (5)158
O8—H8···O7ii0.821.732.546 (5)173
N1—H1···O30.861.952.773 (5)161
N2—H2A···O30.862.463.152 (6)138
N2—H2B···O60.862.152.943 (6)152
N2—H2B···O9iii0.862.543.057 (6)119
N4—H4···O50.862.012.769 (5)146
N5—H5A···O50.862.272.958 (6)137
N5—H5B···O10.862.022.833 (6)157
N5—H5B···O11iv0.862.563.016 (6)115
C2—H2C···O60.932.373.132 (6)139
C8—H8C···O4v0.932.373.261 (6)159
C3—H3···O7vi0.932.413.202 (6)143
C5—H5C···O2i0.932.503.245 (6)137
C5—H5C···O10vii0.932.503.150 (6)128
C7—H7···O10.932.523.228 (6)134
C10—H10···O5ii0.932.233.130 (6)162
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x1/2, y+1/2, z+1; (vi) x+1/2, y, z+1/2; (vii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·HO4Se
Mr284.10
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.092 (3), 13.416 (2), 30.149 (4)
V3)3677.5 (14)
Z16
Radiation typeMo Kα
µ (mm1)4.10
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.403, 0.444
No. of measured, independent and
observed [I > 2σ(I)] reflections
8480, 4426, 2650
Rint0.075
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 0.97
No. of reflections4426
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.60

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.752.527 (5)158
O8—H8···O7ii0.821.732.546 (5)173
N1—H1···O30.861.952.773 (5)161
N2—H2A···O30.862.463.152 (6)138
N2—H2B···O60.862.152.943 (6)152
N2—H2B···O9iii0.862.543.057 (6)119
N4—H4···O50.862.012.769 (5)146
N5—H5A···O50.862.272.958 (6)137
N5—H5B···O10.862.022.833 (6)157
N5—H5B···O11iv0.862.563.016 (6)115
C2—H2C···O60.932.373.132 (6)139
C8—H8C···O4v0.932.373.261 (6)159
C3—H3···O7vi0.932.413.202 (6)143
C5—H5C···O2i0.932.503.245 (6)137
C5—H5C···O10vii0.932.503.150 (6)128
C7—H7···O10.932.523.228 (6)134
C10—H10···O5ii0.932.233.130 (6)162
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x1/2, y+1/2, z+1; (vi) x+1/2, y, z+1/2; (vii) x+2, y+1, z+1.
 

References

First citationAakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. pp. 1385–1389.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMasse, R. & Zyss, J. (1991). Mol. Eng. 1, 141–152.  CSD CrossRef CAS Google Scholar
First citationPécaut, J., Le Fur, Y. & Masse, R. (1993a). Acta Cryst. B49, 535–541.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationPécaut, J., Lévy, J. P. & Masse, R. (1993b). J. Mater. Chem. 3, 999–1003.  Google Scholar
First citationPécaut, J. & Masse, R. (1994). J. Mater. Chem. 4, 1851–1854.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540–4547.  CrossRef CAS Web of Science Google Scholar
First citationSteiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348–357.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatanabe, O., Noritake, T., Hirose, Y., Okada, A. & Kurauchi, T. (1993). J. Mater. Chem. 3, 1053–1057.  CSD CrossRef CAS Web of Science Google Scholar
First citationZyss, J., Masse, R., Bagieu-Beucher, M. & Levy, J. P. (1993). Adv. Mater. 5, 120–124.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3009-o3010
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds