organic compounds
2-Amino-5-nitropyridinium hydrogen selenate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn
There are two cations and two anions in the 5H6N3O2+·HSeO4−. In the crystal, there are two independent chains of HSeO4− anions running along the a axis, linked by O—H⋯O hydrogen bonds. Ribbons of cations linked by N—H⋯O hydrogen bonds run along the b-axis direction, and are further hydrogen bonded to the anions by N—H⋯O and C—H⋯O links, generating a three-dimensional network.
of the title compound, CRelated literature
For related structures of 2-amino-5-nitropyridinium salts, see: Pécaut et al. (1993a,b); Masse & Zyss (1991); Zyss et al. (1993); Watanabe et al. (1993); Pécaut & Masse (1994). For hydrogen bonds, see: Desiraju (1991); Steiner (1993, 1994). For bond lengths in related structures, see: Aakeröy et al. (1998). Ferraris & Ivaldi (1984).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809042354/hb5132sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809042354/hb5132Isup2.hkl
The starting materials, 2-amino-5-nitropyridine (2-A5NP) and selenic acid (Aldrich, 40 wt% in H2O, 99.95%) were used as supplied. 5 mmol of selenic acid was added to a hot solution (20 ml of water and 5 ml of ethanol) of 2-A5NP (5 mmol). The mixture was cooled and slowly evaporated at room temperature for several days until it resulted in yellow prisms of (I).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. | |
Fig. 2. Projection of (I) along the a axis. |
C5H6N3O2+·HO4Se− | F(000) = 2240 |
Mr = 284.10 | Dx = 2.052 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 9.092 (3) Å | θ = 9–11° |
b = 13.416 (2) Å | µ = 4.10 mm−1 |
c = 30.149 (4) Å | T = 298 K |
V = 3677.5 (14) Å3 | Prism, yellow |
Z = 16 | 0.23 × 0.21 × 0.19 mm |
Enraf–Nonius TurboCAD-4 diffractometer | 2650 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.075 |
Graphite monochromator | θmax = 28.0°, θmin = 2.6° |
Non–profiled ω scans | h = −10→11 |
Absorption correction: multi-scan (Blessing, 1995) | k = 0→17 |
Tmin = 0.403, Tmax = 0.444 | l = 0→39 |
8480 measured reflections | 2 standard reflections every 120 min |
4426 independent reflections | intensity decay: 6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3 |
4426 reflections | (Δ/σ)max < 0.001 |
273 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C5H6N3O2+·HO4Se− | V = 3677.5 (14) Å3 |
Mr = 284.10 | Z = 16 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.092 (3) Å | µ = 4.10 mm−1 |
b = 13.416 (2) Å | T = 298 K |
c = 30.149 (4) Å | 0.23 × 0.21 × 0.19 mm |
Enraf–Nonius TurboCAD-4 diffractometer | 2650 reflections with I > 2σ(I) |
Absorption correction: multi-scan (Blessing, 1995) | Rint = 0.075 |
Tmin = 0.403, Tmax = 0.444 | 2 standard reflections every 120 min |
8480 measured reflections | intensity decay: 6% |
4426 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.59 e Å−3 |
4426 reflections | Δρmin = −0.60 e Å−3 |
273 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.36683 (5) | 0.57372 (4) | 0.271792 (15) | 0.02983 (13) | |
Se2 | 0.41005 (5) | 0.29253 (4) | 0.487699 (15) | 0.03145 (13) | |
O1 | 0.3545 (5) | 0.2664 (4) | 0.43901 (12) | 0.0799 (15) | |
O2 | 0.5188 (4) | 0.1974 (3) | 0.50425 (14) | 0.0553 (11) | |
H2 | 0.5936 | 0.1963 | 0.4890 | 0.083* | |
O3 | 0.5015 (5) | 0.3935 (3) | 0.49155 (15) | 0.0644 (12) | |
O4 | 0.2793 (4) | 0.2887 (3) | 0.52431 (10) | 0.0452 (9) | |
O5 | 0.2967 (4) | 0.4638 (3) | 0.27541 (12) | 0.0459 (9) | |
O6 | 0.4460 (4) | 0.6107 (3) | 0.31613 (11) | 0.0476 (10) | |
O7 | 0.4741 (4) | 0.5824 (3) | 0.22931 (11) | 0.0554 (11) | |
O8 | 0.2301 (4) | 0.6563 (3) | 0.26121 (17) | 0.0647 (13) | |
H8 | 0.1503 | 0.6299 | 0.2659 | 0.097* | |
O9 | 1.1750 (4) | 0.5569 (3) | 0.38425 (14) | 0.0651 (13) | |
O10 | 1.1601 (4) | 0.5021 (3) | 0.45094 (14) | 0.0589 (11) | |
O11 | −0.3916 (4) | 0.2918 (3) | 0.36698 (16) | 0.0712 (14) | |
O12 | −0.3715 (4) | 0.3419 (4) | 0.29945 (16) | 0.0713 (13) | |
N1 | 0.7158 (4) | 0.4848 (3) | 0.44020 (13) | 0.0345 (9) | |
H1 | 0.6641 | 0.4587 | 0.4611 | 0.041* | |
N2 | 0.5007 (4) | 0.5204 (3) | 0.40355 (15) | 0.0420 (11) | |
H2A | 0.4529 | 0.4972 | 0.4259 | 0.050* | |
H2B | 0.4539 | 0.5430 | 0.3809 | 0.050* | |
N3 | 1.1047 (5) | 0.5295 (3) | 0.41618 (15) | 0.0419 (11) | |
N4 | 0.0710 (4) | 0.3519 (3) | 0.31176 (13) | 0.0358 (10) | |
H4 | 0.1237 | 0.3769 | 0.2909 | 0.043* | |
N5 | 0.2842 (4) | 0.3237 (3) | 0.35110 (14) | 0.0436 (11) | |
H5A | 0.3340 | 0.3483 | 0.3294 | 0.052* | |
H5B | 0.3288 | 0.3025 | 0.3744 | 0.052* | |
N6 | −0.3196 (5) | 0.3149 (3) | 0.33474 (19) | 0.0468 (12) | |
C1 | 0.6453 (5) | 0.5211 (3) | 0.40398 (16) | 0.0327 (11) | |
C2 | 0.7316 (5) | 0.5571 (3) | 0.36909 (14) | 0.0309 (11) | |
H2C | 0.6864 | 0.5780 | 0.3430 | 0.037* | |
C3 | 0.8802 (5) | 0.5620 (3) | 0.37265 (15) | 0.0328 (11) | |
H3 | 0.9374 | 0.5874 | 0.3497 | 0.039* | |
C4 | 0.9448 (5) | 0.5275 (4) | 0.41192 (16) | 0.0311 (11) | |
C5 | 0.8634 (5) | 0.4879 (4) | 0.44491 (16) | 0.0342 (11) | |
H5C | 0.9080 | 0.4632 | 0.4704 | 0.041* | |
C6 | 0.1403 (5) | 0.3185 (3) | 0.34854 (15) | 0.0305 (10) | |
C9 | −0.1590 (5) | 0.3146 (3) | 0.33920 (17) | 0.0330 (11) | |
C8 | −0.0953 (5) | 0.2830 (3) | 0.37952 (16) | 0.0341 (11) | |
H8C | −0.1541 | 0.2621 | 0.4030 | 0.041* | |
C7 | 0.0523 (5) | 0.2838 (3) | 0.38333 (15) | 0.0312 (11) | |
H7 | 0.0960 | 0.2611 | 0.4093 | 0.037* | |
C10 | −0.0746 (5) | 0.3482 (4) | 0.30600 (16) | 0.0356 (11) | |
H10 | −0.1167 | 0.3687 | 0.2794 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0236 (2) | 0.0403 (3) | 0.0256 (2) | −0.0052 (2) | 0.00113 (19) | −0.0015 (2) |
Se2 | 0.0267 (2) | 0.0409 (3) | 0.0268 (2) | −0.0001 (2) | 0.00137 (19) | 0.0081 (2) |
O1 | 0.061 (3) | 0.148 (5) | 0.030 (2) | 0.001 (3) | −0.006 (2) | −0.004 (3) |
O2 | 0.035 (2) | 0.051 (2) | 0.080 (3) | 0.0063 (18) | 0.0125 (19) | 0.029 (2) |
O3 | 0.070 (3) | 0.039 (2) | 0.084 (3) | −0.015 (2) | 0.034 (2) | 0.000 (2) |
O4 | 0.0268 (19) | 0.076 (3) | 0.0327 (19) | −0.0044 (18) | 0.0055 (14) | 0.0082 (19) |
O5 | 0.045 (2) | 0.038 (2) | 0.054 (2) | −0.0077 (17) | 0.0136 (18) | −0.0064 (18) |
O6 | 0.052 (2) | 0.061 (3) | 0.0296 (19) | −0.007 (2) | −0.0080 (17) | −0.0101 (18) |
O7 | 0.035 (2) | 0.100 (3) | 0.0312 (19) | −0.023 (2) | 0.0111 (16) | −0.006 (2) |
O8 | 0.029 (2) | 0.049 (2) | 0.117 (4) | −0.0035 (18) | −0.009 (2) | 0.025 (2) |
O9 | 0.033 (2) | 0.105 (4) | 0.058 (3) | −0.007 (2) | 0.012 (2) | 0.002 (3) |
O10 | 0.039 (2) | 0.075 (3) | 0.062 (3) | 0.008 (2) | −0.015 (2) | 0.004 (2) |
O11 | 0.033 (2) | 0.086 (4) | 0.094 (4) | −0.004 (2) | 0.025 (2) | 0.012 (3) |
O12 | 0.031 (2) | 0.093 (4) | 0.091 (4) | 0.002 (2) | −0.016 (2) | 0.016 (3) |
N1 | 0.031 (2) | 0.041 (2) | 0.032 (2) | −0.0018 (19) | 0.0058 (17) | 0.0056 (19) |
N2 | 0.025 (2) | 0.057 (3) | 0.044 (3) | −0.003 (2) | 0.0021 (18) | 0.007 (2) |
N3 | 0.033 (3) | 0.046 (3) | 0.047 (3) | 0.004 (2) | 0.001 (2) | −0.007 (2) |
N4 | 0.028 (2) | 0.050 (3) | 0.029 (2) | −0.0023 (19) | −0.0010 (17) | 0.0121 (19) |
N5 | 0.031 (2) | 0.059 (3) | 0.040 (2) | −0.005 (2) | −0.0055 (18) | 0.008 (2) |
N6 | 0.030 (2) | 0.032 (3) | 0.079 (4) | 0.0035 (19) | −0.003 (3) | 0.000 (2) |
C1 | 0.038 (3) | 0.024 (2) | 0.036 (3) | 0.001 (2) | 0.000 (2) | −0.004 (2) |
C2 | 0.030 (3) | 0.039 (3) | 0.024 (2) | 0.002 (2) | 0.000 (2) | 0.002 (2) |
C3 | 0.034 (3) | 0.031 (3) | 0.033 (3) | 0.001 (2) | 0.007 (2) | 0.001 (2) |
C4 | 0.027 (3) | 0.034 (3) | 0.033 (3) | 0.001 (2) | 0.000 (2) | −0.006 (2) |
C5 | 0.035 (3) | 0.035 (3) | 0.032 (3) | 0.002 (2) | −0.008 (2) | −0.001 (2) |
C6 | 0.028 (2) | 0.030 (3) | 0.034 (3) | −0.001 (2) | −0.006 (2) | −0.003 (2) |
C9 | 0.027 (3) | 0.027 (3) | 0.046 (3) | −0.001 (2) | 0.000 (2) | −0.004 (2) |
C8 | 0.039 (3) | 0.030 (3) | 0.033 (3) | 0.000 (2) | 0.012 (2) | −0.004 (2) |
C7 | 0.037 (3) | 0.032 (3) | 0.024 (2) | 0.002 (2) | −0.004 (2) | 0.001 (2) |
C10 | 0.033 (3) | 0.041 (3) | 0.034 (3) | −0.002 (2) | −0.010 (2) | 0.010 (2) |
Se1—O6 | 1.597 (3) | N4—C10 | 1.337 (6) |
Se1—O5 | 1.610 (3) | N4—C6 | 1.352 (6) |
Se1—O7 | 1.614 (3) | N4—H4 | 0.8600 |
Se1—O8 | 1.696 (4) | N5—C6 | 1.312 (6) |
Se2—O1 | 1.592 (4) | N5—H5A | 0.8600 |
Se2—O3 | 1.594 (4) | N5—H5B | 0.8600 |
Se2—O4 | 1.623 (3) | N6—C9 | 1.466 (6) |
Se2—O2 | 1.690 (4) | C1—C2 | 1.398 (6) |
O2—H2 | 0.8200 | C2—C3 | 1.357 (6) |
O8—H8 | 0.8200 | C2—H2C | 0.9300 |
O9—N3 | 1.213 (5) | C3—C4 | 1.400 (6) |
O10—N3 | 1.220 (5) | C3—H3 | 0.9300 |
O11—N6 | 1.213 (6) | C4—C5 | 1.349 (7) |
O12—N6 | 1.219 (6) | C5—H5C | 0.9300 |
N1—C5 | 1.350 (6) | C6—C7 | 1.399 (6) |
N1—C1 | 1.356 (6) | C9—C10 | 1.339 (7) |
N1—H1 | 0.8600 | C9—C8 | 1.412 (7) |
N2—C1 | 1.315 (6) | C8—C7 | 1.347 (6) |
N2—H2A | 0.8600 | C8—H8C | 0.9300 |
N2—H2B | 0.8600 | C7—H7 | 0.9300 |
N3—C4 | 1.459 (6) | C10—H10 | 0.9300 |
O6—Se1—O5 | 113.95 (19) | O12—N6—C9 | 117.8 (5) |
O6—Se1—O7 | 111.69 (19) | N2—C1—N1 | 118.5 (5) |
O5—Se1—O7 | 111.02 (19) | N2—C1—C2 | 123.8 (5) |
O6—Se1—O8 | 106.5 (2) | N1—C1—C2 | 117.7 (5) |
O5—Se1—O8 | 108.74 (19) | C3—C2—C1 | 121.1 (5) |
O7—Se1—O8 | 104.3 (2) | C3—C2—H2C | 119.5 |
O1—Se2—O3 | 114.9 (3) | C1—C2—H2C | 119.5 |
O1—Se2—O4 | 112.8 (2) | C2—C3—C4 | 117.9 (4) |
O3—Se2—O4 | 111.1 (2) | C2—C3—H3 | 121.0 |
O1—Se2—O2 | 107.0 (3) | C4—C3—H3 | 121.0 |
O3—Se2—O2 | 108.3 (2) | C5—C4—C3 | 121.5 (4) |
O4—Se2—O2 | 101.76 (18) | C5—C4—N3 | 119.3 (4) |
Se2—O2—H2 | 109.5 | C3—C4—N3 | 119.1 (4) |
Se1—O8—H8 | 109.5 | C4—C5—N1 | 118.7 (4) |
C5—N1—C1 | 122.9 (4) | C4—C5—H5C | 120.6 |
C5—N1—H1 | 118.6 | N1—C5—H5C | 120.6 |
C1—N1—H1 | 118.6 | N5—C6—N4 | 119.7 (4) |
C1—N2—H2A | 120.0 | N5—C6—C7 | 123.0 (4) |
C1—N2—H2B | 120.0 | N4—C6—C7 | 117.3 (4) |
H2A—N2—H2B | 120.0 | C10—C9—C8 | 120.7 (4) |
O9—N3—O10 | 123.7 (5) | C10—C9—N6 | 120.0 (5) |
O9—N3—C4 | 117.4 (4) | C8—C9—N6 | 119.2 (5) |
O10—N3—C4 | 118.8 (4) | C7—C8—C9 | 118.7 (4) |
C10—N4—C6 | 123.8 (4) | C7—C8—H8C | 120.7 |
C10—N4—H4 | 118.1 | C9—C8—H8C | 120.7 |
C6—N4—H4 | 118.1 | C8—C7—C6 | 120.6 (4) |
C6—N5—H5A | 120.0 | C8—C7—H7 | 119.7 |
C6—N5—H5B | 120.0 | C6—C7—H7 | 119.7 |
H5A—N5—H5B | 120.0 | N4—C10—C9 | 118.9 (4) |
O11—N6—O12 | 124.5 (5) | N4—C10—H10 | 120.6 |
O11—N6—C9 | 117.6 (5) | C9—C10—H10 | 120.6 |
C5—N1—C1—N2 | −175.8 (4) | C10—N4—C6—N5 | 179.0 (5) |
C5—N1—C1—C2 | 4.3 (7) | C10—N4—C6—C7 | −4.0 (7) |
N2—C1—C2—C3 | 175.6 (5) | O11—N6—C9—C10 | −173.8 (5) |
N1—C1—C2—C3 | −4.5 (7) | O12—N6—C9—C10 | 3.5 (7) |
C1—C2—C3—C4 | 1.6 (7) | O11—N6—C9—C8 | 3.1 (7) |
C2—C3—C4—C5 | 1.8 (7) | O12—N6—C9—C8 | −179.5 (5) |
C2—C3—C4—N3 | 178.4 (4) | C10—C9—C8—C7 | −2.5 (7) |
O9—N3—C4—C5 | 173.2 (5) | N6—C9—C8—C7 | −179.5 (4) |
O10—N3—C4—C5 | −5.4 (7) | C9—C8—C7—C6 | 2.2 (7) |
O9—N3—C4—C3 | −3.4 (7) | N5—C6—C7—C8 | 177.8 (5) |
O10—N3—C4—C3 | 177.9 (5) | N4—C6—C7—C8 | 0.9 (7) |
C3—C4—C5—N1 | −2.2 (7) | C6—N4—C10—C9 | 3.7 (8) |
N3—C4—C5—N1 | −178.8 (4) | C8—C9—C10—N4 | −0.3 (8) |
C1—N1—C5—C4 | −1.0 (7) | N6—C9—C10—N4 | 176.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O4i | 0.82 | 1.75 | 2.527 (5) | 158 |
O8—H8···O7ii | 0.82 | 1.73 | 2.546 (5) | 173 |
N1—H1···O3 | 0.86 | 1.95 | 2.773 (5) | 161 |
N2—H2A···O3 | 0.86 | 2.46 | 3.152 (6) | 138 |
N2—H2B···O6 | 0.86 | 2.15 | 2.943 (6) | 152 |
N2—H2B···O9iii | 0.86 | 2.54 | 3.057 (6) | 119 |
N4—H4···O5 | 0.86 | 2.01 | 2.769 (5) | 146 |
N5—H5A···O5 | 0.86 | 2.27 | 2.958 (6) | 137 |
N5—H5B···O1 | 0.86 | 2.02 | 2.833 (6) | 157 |
N5—H5B···O11iv | 0.86 | 2.56 | 3.016 (6) | 115 |
C2—H2C···O6 | 0.93 | 2.37 | 3.132 (6) | 139 |
C8—H8C···O4v | 0.93 | 2.37 | 3.261 (6) | 159 |
C3—H3···O7vi | 0.93 | 2.41 | 3.202 (6) | 143 |
C5—H5C···O2i | 0.93 | 2.50 | 3.245 (6) | 137 |
C5—H5C···O10vii | 0.93 | 2.50 | 3.150 (6) | 128 |
C7—H7···O1 | 0.93 | 2.52 | 3.228 (6) | 134 |
C10—H10···O5ii | 0.93 | 2.23 | 3.130 (6) | 162 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, y, −z+1/2; (iii) x−1, y, z; (iv) x+1, y, z; (v) x−1/2, −y+1/2, −z+1; (vi) x+1/2, y, −z+1/2; (vii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H6N3O2+·HO4Se− |
Mr | 284.10 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 9.092 (3), 13.416 (2), 30.149 (4) |
V (Å3) | 3677.5 (14) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 4.10 |
Crystal size (mm) | 0.23 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.403, 0.444 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8480, 4426, 2650 |
Rint | 0.075 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.101, 0.97 |
No. of reflections | 4426 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.60 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O4i | 0.82 | 1.75 | 2.527 (5) | 158 |
O8—H8···O7ii | 0.82 | 1.73 | 2.546 (5) | 173 |
N1—H1···O3 | 0.86 | 1.95 | 2.773 (5) | 161 |
N2—H2A···O3 | 0.86 | 2.46 | 3.152 (6) | 138 |
N2—H2B···O6 | 0.86 | 2.15 | 2.943 (6) | 152 |
N2—H2B···O9iii | 0.86 | 2.54 | 3.057 (6) | 119 |
N4—H4···O5 | 0.86 | 2.01 | 2.769 (5) | 146 |
N5—H5A···O5 | 0.86 | 2.27 | 2.958 (6) | 137 |
N5—H5B···O1 | 0.86 | 2.02 | 2.833 (6) | 157 |
N5—H5B···O11iv | 0.86 | 2.56 | 3.016 (6) | 115 |
C2—H2C···O6 | 0.93 | 2.37 | 3.132 (6) | 139 |
C8—H8C···O4v | 0.93 | 2.37 | 3.261 (6) | 159 |
C3—H3···O7vi | 0.93 | 2.41 | 3.202 (6) | 143 |
C5—H5C···O2i | 0.93 | 2.50 | 3.245 (6) | 137 |
C5—H5C···O10vii | 0.93 | 2.50 | 3.150 (6) | 128 |
C7—H7···O1 | 0.93 | 2.52 | 3.228 (6) | 134 |
C10—H10···O5ii | 0.93 | 2.23 | 3.130 (6) | 162 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, y, −z+1/2; (iii) x−1, y, z; (iv) x+1, y, z; (v) x−1/2, −y+1/2, −z+1; (vi) x+1/2, y, −z+1/2; (vii) −x+2, −y+1, −z+1. |
References
Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. pp. 1385–1389. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Masse, R. & Zyss, J. (1991). Mol. Eng. 1, 141–152. CSD CrossRef CAS Google Scholar
Pécaut, J., Le Fur, Y. & Masse, R. (1993a). Acta Cryst. B49, 535–541. CSD CrossRef Web of Science IUCr Journals Google Scholar
Pécaut, J., Lévy, J. P. & Masse, R. (1993b). J. Mater. Chem. 3, 999–1003. Google Scholar
Pécaut, J. & Masse, R. (1994). J. Mater. Chem. 4, 1851–1854. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540–4547. CrossRef CAS Web of Science Google Scholar
Steiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348–357. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watanabe, O., Noritake, T., Hirose, Y., Okada, A. & Kurauchi, T. (1993). J. Mater. Chem. 3, 1053–1057. CSD CrossRef CAS Web of Science Google Scholar
Zyss, J., Masse, R., Bagieu-Beucher, M. & Levy, J. P. (1993). Adv. Mater. 5, 120–124. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 2-amino-5-nitropyridine (2 A5NP) chromophore is promising candidate for non linear optics. From this molecule, several salts having noncentrosymmetric structures were obtained: dihydrogenphosphate, dihydrogenarsenate, chloride, bromide, tartrate, and acetophosphonate of 2-amino-5-nitropyridinium (Pécaut et al., 1993a,b; Masse et al., 1991; Pécaut et al., 1993, Zyss et al., 1993; Watanabe et al., 1993; Pécaut Masse, 1994). In the framework of our systematic research on nitropyridine chromophore, we report on the new compound (C5H6N3O2)+, HSeO4- synthesized from the 2-amino-5-nitropyridine and selenic acid.
The asymmetric unit of the title compound (I) that contains two 2-amino-5-nitropyridinium cations and two hydrogen selenate anions, is shown in Fig. 1. The connection between theses independent components generate a three-dimensional supramolecular network which is stabilized by hydrogen bonds, Van Der Waals and electrostatic interactions. In fact, The two hydrogen selenate anions are connected through strong hydrogen bonds characterized by relatively short distances, from 1.73 to 1.75 A% (Table 1), to form two independent robust chains extending along a direction (Fig. 2). Both cations are arranged in ribbons and anchored onto both adjacent anionic chains via N—H···O and C—H···O hydrogen bonds. The C—H···O bonds have already been evidenced by several authors in molecular crystals; (Desiraju et al., 1991; Steiner et al., 1993 and 1994). With regards to the organic subnetwork, each 2 A5NP cation is hydrogen bonded to symmetry-equivalent 2 A5NP cation by rather long N—H···O and C—H···O bonds (with distances N2—H2B···O9 (x - 1, y, z) = 2.54A% and C5—H5C···O10 (-x + 2, -y + 1, -z + 1) = 2.50 A%) as to form ribbons running along the b axis. In the selenate chains, it is noteworthy that the O···O distances involved in hydrogen bonds (2.527 (5) to 2.546 (5) A%) are of the same order of magnitude as the O···O distances in HSeO4 (2.41 to 2.56A%); this should allow us to consider the (HSeO4-)n subnetwork as a polyanion. The geometrical features of HSeO4 entities, show that the Se—O bonds are significantly shorter [1.592 (4) to 1.623 (3) A% than the Se—OH bonds [1.690 (4) to 1.696 (4)A%], which is in accordance with the data relative to the protonated oxoanions as reported by (Ferraris et al., 1984) Bond lengths and angles of the organic cations can be regarded as normal and are comparable with values of other 2-amino-5-nitropyridinium compounds. The organic ring atoms of both independent cations are essentially planar (the deviations from least-square planes are 0.001 and 0.002 Å). The angles between the plane of the NO2 group and the pyridinium rings are 4.9 (3) and 5.8 (4)°. This distortion is evident because the oxygen atoms of the NO2 group are the seat of various types of inter-and intramolecular hydrogen bonds. Moreover, the C—NH2 (1.312 (6) and 1.315 (6)Å) and C—NO2 (1.459 (6) and 1.466 (6) Å) distances in the 2 A5NP cations are respectively shortened and lengthened with respect to the C—NH2 (1.337 (4) Å) and C—NO2 (1.429 (4) Å) observed in the 2-amino-5-nitropyridine molecular crystal (Aakeröy, et al., 1998). All the 2-amino-5-nitropyridinium cations hosted in various organic or inorganic matrices show the same changes in C—NH2 and C—NO2 distances, revealing a weak increase of π bond character in C—NH2 and a decrease in C—NO2.