organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3004-o3005

5,15-Bis(3,5-di-tert-butyl­phen­yl)-10,20-bis­­(phenyl­ethyn­yl)porphyrin

aDepartment of Applied Chemistry, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi 730-701, Republic of Korea
*Correspondence e-mail: hjk@kumoh.ac.kr

(Received 10 October 2009; accepted 2 November 2009; online 7 November 2009)

In the centrosymmetric title compound, C64H62N4, the two phenyl­ethynyl groups lie at diagonal meso positions. The 24-membered porphyrin has in-plane distortion with respect to the mean plane of the macrocycle and two intra-ring bifurcated N—H⋯(N,N) hydrogen bonds occur. The dihedral angles between the phenyl rings in the phenyl­ethynyl group and the 3,5-bis­(tert-but­yl)phenyl group with respect to the mean plane of the porphyrin are 17.2 (2) and 59.2 (3)°. The tert-butyl groups are disordered over two sets of sites in a 0.661 (13):0.339 (13) ratio.

Related literature

For background to porphyrin structures and electronic properties, see: Anderson et al. (1994[Anderson, H. L., Martin, S. J. & Bradley, D. D. C. (1994). Angew. Chem. Int. Ed. Engl. 33, 655-657.], 1998[Anderson, H. L., Wylie, A. P. & Prout, K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1607-1611.]); Fujita et al. (1995[Fujita, T., Uekusa, H., Ohkubo, A., Shimura, T., Aramaki, K., Nishihara, H. & Ohba, S. (1995). Acta Cryst. C51, 2265-2269.]); Henari et al. (1997[Henari, F. Z., Blau, W. J., Milgrom, L. R., Yahioglu, G., Phillips, D. & Lacey, J. A. (1997). Chem. Phys. Lett. 267, 229-233.]); Huuskonen et al. (1998[Huuskonen, S.-P. J., Wilson, G. S. & Anderson, H. L. (1998). Acta Cryst. C54, 662-664.]); LeCours et al. (1996[LeCours, S. M., DiMagno, S. G. & Therien, M. J. (1996). J. Am. Chem. Soc. 118, 11854-11864.]); Screen et al. (2002[Screen, T. E. O., Thorne, J. R. G., Denning, R. G., Bucknall, D. G. & Anderson, H. L. (2002). J. Am. Chem. Soc. 124, 9712-9713.]); Seo et al. (2008[Seo, J.-W., Jang, S. Y., Kim, D. & Kim, H.-J. (2008). Tetrahedron, 64, 2733-2739.]); Silvers & Tulinsky (1967[Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331-3337.]).

[Scheme 1]

Experimental

Crystal data
  • C64H62N4

  • Mr = 887.18

  • Triclinic, [P \overline 1]

  • a = 9.9598 (19) Å

  • b = 10.496 (2) Å

  • c = 13.925 (3) Å

  • α = 86.236 (4)°

  • β = 80.266 (4)°

  • γ = 82.765 (4)°

  • V = 1421.8 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 213 K

  • 0.45 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.997

  • 6144 measured reflections

  • 4136 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.101

  • θmax = 23.5°

Refinement
  • R[F2 > 2σ(F2)] = 0.107

  • wR(F2) = 0.315

  • S = 0.99

  • 4136 reflections

  • 363 parameters

  • 193 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2 0.87 2.44 2.972 (6) 120
N1—H1A⋯N2i 0.87 2.35 2.891 (5) 121
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The electronic and steric tunnings through surrogating various substituents on the meso- and beta-carbons play crucial role in the synthesis of diverse porphyrin systems. In this respect, meso-ethynyl porphyrins have attracted the attention due to their wide utilization for the development of conjugated electronic (LeCours et al., 1996; Anderson et al., 1994; Henari et al., 1997; Screen et al., 2002) and light harvesting materials. As an extension of our research on the conjugated photoelectronic materials (Seo et al., 2008), the title compound (I) was prepared and its crystal structure determined.

The molecular structure of C64H62N4 (I) is shown in Figure 1. The structure shows symmetric molecular system due to presence of inversion center (Ci) in the core of porphyrin macrocycle. On assuming all four nitrogen atoms of all pyrolic groups in a plane, it was observed that the meso-carbons were deviated with ± 0.072 Å from the least-squares plane and find analogy with earlier reported compound 5,15-bis(3,5-di-tert-butylphenyl) -10,20-bis(trimethylsilylethynyl)porphyrin (Huuskonen et al., 1998). The structural analysis of the porphyrin macrocycle reveals that the plane of phenyl rings in the phenylethynyl groups is slightly twisted with the dihedral angle of 17.17° with respect to the least-squares plane of the porphyrin, in contrast the plane of aryl rings associated with 3,5-bis(tert-butyl)phenyl groups (59.19°) (Figure 2). The dihedral angle associated with phenylethynyl groups (17.17°) is also much smaller with respect to phenyl planes slanting (61–63°) in tetraphenylporphyrin (Silvers et al., 1967). The comparison of this result with the tetraphenylporphyrin, it was observed that on increasing the conjugation with phenyl groups leads to release of steric strain. The distances between the nitrogen atoms (N1—N2 = 2.972, N1—N2' = 2.891, N1—N1' = 4.167, N2—N2' = 4.126 Å) involve in the formation of basal parallelogram based core along with the C—C (triple bond) (1.165 Å) bond lengths and C(meso)-C(alpha)-C(beta) angles (178.07°) involving ethynyl groups show the analogy with previous reports (Fujita et al., 1995; Huuskonen et al., 1998). In addition, the distances involving the diagonal meso-carbon atoms (C5—C5' = 6.815, C10—C10' = 6.994 Å) also differ to each other and correlate with the previous work (Huuskonen et al., 1998). The shortest intermolecular distances for the pi-pi and pi-H interactions are not observed less than 6.085 and 3.84 Å, respectively and imply the steric strain between aryl groups of adjacent porphyrin prevent the strong interactions in between adjacent molecular system (Anderson et al., 1998).

Related literature top

For background to porphyrin structures and electronic properties, see: Anderson et al. (1994, 1998); Fujita et al. (1995); Henari et al. (1997); Huuskonen et al. (1998); LeCours et al. (1996); Screen et al. (2002); Seo et al. (2008); Silvers & Tulinsky (1967).

Experimental top

The title compound was prepared from the corresponding dipyrromethane and phenylpropargyl aldehyde as follows. BF3.OEt2 (25 ML, 0.2 mmol) was added to a solution of meso-(3,5-di-tert-butylphenyl) dipyrromethane (0.669 g, 2.0 mmol) and phenylpropargyl aldehyde (245 ML, 2.0 mmol) in dry CH2Cl2 (200 ml). The reaction mixture was stirred for 10 min at room temperature.

2,3-Dichloro-5,6-dicyano-p-benzoquinone (340 mg, 0.15 mmol) was added and further stirred for 30 min. After evaporation of solvent to dryness, the title compound was separated by column chromatography (SiO2, CH2Cl2:n-hexane = 1:4). Recrystallization from a CH2Cl2/CH3CN solution afforded purple crystalline solid. Yield: 124 mg (14%). 1H NMR (200 MHz, CDCl3): Δ 9.70 (d, 4H), 8.89 (d, 4H), 8.06 (s, 4H), 8.00 (t, 2H), 7.82 (s, 2H), 1.55 (s, 36H), -1.92 (br, 2H). UV-vis (CH2Cl2): Λmax (log E) 443 (6.04), 554 (4.38), 594(4.92), 623 (4.25), 681 (4.61) nm.

Purple needles of (I) were grown by slow diffusion of CH3CN to a CH2Cl2 solution of the title compound.

Refinement top

The carbon atoms C26—C28 and C30—C32 and their attached H atoms are disordered over two sets of sites in a 66.1:33.1 ratio with total site occupancy of 1.00 for each one of them. The contributions of the mostly disordered solvent molecules were removed from the diffraction data using the SQUEEZE routine of PLATON software (Spek, 2009), and then final refinements were carried out. All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in their geometrically ideal positions.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. Hydrogen atoms (except to N—H) have been omitted for the clarity.
[Figure 2] Fig. 2. A view of molecular structure of (I) showing the tilted planes of the different aryl groups.
5,15-Bis(3,5-di-tert-butylphenyl)-10,20-bis(phenylethynyl)porphyrin top
Crystal data top
C64H62N4Z = 1
Mr = 887.18F(000) = 474
Triclinic, P1Dx = 1.036 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9598 (19) ÅCell parameters from 4136 reflections
b = 10.496 (2) Åθ = 2.0–23.5°
c = 13.925 (3) ŵ = 0.06 mm1
α = 86.236 (4)°T = 213 K
β = 80.266 (4)°Needle, purple
γ = 82.765 (4)°0.45 × 0.10 × 0.05 mm
V = 1421.8 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
4136 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 23.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 811
Tmin = 0.974, Tmax = 0.997k = 1111
6144 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.107Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.315H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1906P)2]
where P = (Fo2 + 2Fc2)/3
4136 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 1.13 e Å3
193 restraintsΔρmin = 0.30 e Å3
Crystal data top
C64H62N4γ = 82.765 (4)°
Mr = 887.18V = 1421.8 (5) Å3
Triclinic, P1Z = 1
a = 9.9598 (19) ÅMo Kα radiation
b = 10.496 (2) ŵ = 0.06 mm1
c = 13.925 (3) ÅT = 213 K
α = 86.236 (4)°0.45 × 0.10 × 0.05 mm
β = 80.266 (4)°
Data collection top
Bruker SMART CCD
diffractometer
4136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2068 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.997Rint = 0.101
6144 measured reflectionsθmax = 23.5°
Refinement top
R[F2 > 2σ(F2)] = 0.107193 restraints
wR(F2) = 0.315H-atom parameters constrained
S = 0.99Δρmax = 1.13 e Å3
4136 reflectionsΔρmin = 0.30 e Å3
363 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4997 (4)0.8413 (3)0.5981 (3)0.0445 (11)
H1A0.49400.91160.56160.053*
N20.3805 (4)0.9196 (3)0.4184 (3)0.0481 (11)
C10.5695 (5)0.8204 (4)0.6753 (3)0.0429 (13)
C20.5537 (6)0.6929 (5)0.7151 (4)0.0529 (14)
H20.59070.65300.76890.063*
C30.4771 (6)0.6413 (5)0.6622 (4)0.0600 (16)
H30.45110.55780.67180.072*
C40.4409 (5)0.7342 (4)0.5880 (4)0.0449 (13)
C50.3646 (5)0.7155 (4)0.5160 (4)0.0482 (13)
C60.3377 (5)0.8019 (5)0.4380 (4)0.0468 (13)
C70.2576 (6)0.7764 (5)0.3646 (4)0.0577 (15)
H70.21540.70200.36080.069*
C80.2563 (6)0.8818 (5)0.3030 (4)0.0564 (15)
H80.21370.89290.24720.068*
C90.3299 (5)0.9725 (4)0.3367 (3)0.0409 (12)
C100.3527 (5)1.0946 (5)0.2919 (3)0.0470 (13)
C110.3101 (6)0.5928 (5)0.5201 (4)0.0557 (14)
C120.2674 (6)0.4937 (5)0.5260 (4)0.0606 (16)
C130.2183 (6)0.3674 (5)0.5331 (4)0.0584 (15)
C140.2721 (6)0.2699 (5)0.5915 (4)0.0605 (15)
H140.34100.28490.62650.073*
C150.1152 (6)0.3433 (5)0.4811 (4)0.0626 (16)
H150.07810.40720.43930.075*
C160.2265 (7)0.1512 (5)0.5990 (5)0.0712 (18)
H160.26550.08500.63810.085*
C170.0704 (7)0.2243 (6)0.4930 (4)0.0760 (19)
H170.00070.20830.46050.091*
C180.1249 (8)0.1287 (6)0.5501 (5)0.0757 (19)
H180.09290.04750.55580.091*
C190.2853 (6)1.1365 (5)0.2057 (4)0.0511 (14)
C200.1439 (6)1.1470 (5)0.2137 (4)0.0636 (16)
H200.09141.12830.27450.076*
C210.3627 (6)1.1657 (4)0.1160 (4)0.0541 (14)
H210.45861.15960.11040.065*
C220.0761 (6)1.1849 (6)0.1337 (4)0.0704 (17)
C230.3015 (6)1.2037 (5)0.0341 (4)0.0612 (15)
C240.1597 (6)1.2114 (6)0.0466 (4)0.0714 (18)
H240.11721.23660.00810.086*
C250.0782 (7)1.2010 (8)0.1463 (5)0.090 (2)
C26A0.1491 (10)1.1396 (11)0.2354 (9)0.077 (3)0.661 (13)
H26A0.10291.05410.24590.115*0.661 (13)
H26B0.24331.13370.22830.115*0.661 (13)
H26C0.14791.19070.29080.115*0.661 (13)
C27A0.1397 (14)1.3240 (12)0.1232 (13)0.118 (5)0.661 (13)
H27A0.23851.32400.13240.178*0.661 (13)
H27B0.10631.34810.05580.178*0.661 (13)
H27C0.11711.38520.16550.178*0.661 (13)
C28A0.1218 (15)1.1113 (16)0.0638 (12)0.147 (6)0.661 (13)
H28A0.08451.02250.07390.221*0.661 (13)
H28B0.08521.14240.00130.221*0.661 (13)
H28C0.22091.11720.07110.221*0.661 (13)
C26B0.125 (4)1.110 (3)0.176 (3)0.156 (15)0.339 (13)
H26D0.22351.12460.17890.234*0.339 (13)
H26E0.10411.08890.24160.234*0.339 (13)
H26F0.08671.04000.13440.234*0.339 (13)
C27B0.121 (3)1.3362 (18)0.2041 (19)0.109 (9)0.339 (13)
H27D0.07531.40430.16680.164*0.339 (13)
H27E0.09331.32490.26790.164*0.339 (13)
H27F0.21951.35900.21150.164*0.339 (13)
C28B0.117 (3)1.263 (3)0.048 (2)0.153 (12)0.339 (13)
H28D0.05261.32270.02030.229*0.339 (13)
H28E0.20911.30880.05980.229*0.339 (13)
H28F0.11471.19620.00250.229*0.339 (13)
C290.3836 (7)1.2398 (6)0.0623 (4)0.0763 (18)
C30A0.495 (6)1.131 (5)0.084 (4)0.094 (9)0.121 (8)
H30A0.50501.08050.02430.141*0.121 (8)
H30B0.58011.16520.11020.141*0.121 (8)
H30C0.47091.07760.13110.141*0.121 (8)
C31A0.294 (5)1.274 (6)0.138 (4)0.089 (10)0.121 (8)
H31A0.35091.29270.20010.134*0.121 (8)
H31B0.22991.34830.11930.134*0.121 (8)
H31C0.24461.20180.14460.134*0.121 (8)
C32A0.445 (7)1.358 (5)0.035 (5)0.110 (10)0.121 (8)
H32A0.51691.32990.00390.165*0.121 (8)
H32B0.37401.41500.00260.165*0.121 (8)
H32C0.48411.40410.09380.165*0.121 (8)
C30B0.3606 (9)1.1477 (8)0.1410 (5)0.092 (3)0.879 (8)
H30D0.41341.17030.20350.138*0.879 (8)
H30E0.26401.15630.14630.138*0.879 (8)
H30F0.39031.05950.12170.138*0.879 (8)
C31B0.3428 (10)1.3783 (8)0.0936 (6)0.109 (3)0.879 (8)
H31D0.39791.39900.15570.163*0.879 (8)
H31E0.35791.43460.04490.163*0.879 (8)
H31F0.24661.38990.10030.163*0.879 (8)
C32B0.5416 (8)1.2160 (9)0.0616 (5)0.086 (2)0.879 (8)
H32D0.59021.24150.12490.130*0.879 (8)
H32E0.56801.12550.04750.130*0.879 (8)
H32F0.56451.26640.01200.130*0.879 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.048 (3)0.031 (2)0.050 (3)0.0016 (18)0.004 (2)0.0123 (18)
N20.053 (3)0.039 (2)0.050 (3)0.0027 (19)0.002 (2)0.0033 (19)
C10.043 (3)0.033 (3)0.046 (3)0.006 (2)0.001 (2)0.012 (2)
C20.057 (4)0.043 (3)0.059 (3)0.008 (3)0.014 (3)0.014 (3)
C30.058 (4)0.047 (3)0.071 (4)0.009 (3)0.006 (3)0.026 (3)
C40.050 (3)0.032 (3)0.048 (3)0.005 (2)0.005 (3)0.006 (2)
C50.049 (3)0.041 (3)0.051 (3)0.007 (2)0.002 (3)0.006 (2)
C60.035 (3)0.050 (3)0.051 (3)0.001 (2)0.001 (2)0.002 (2)
C70.061 (4)0.055 (3)0.059 (4)0.021 (3)0.006 (3)0.004 (3)
C80.061 (4)0.066 (4)0.043 (3)0.014 (3)0.006 (3)0.000 (3)
C90.035 (3)0.039 (3)0.046 (3)0.000 (2)0.004 (2)0.001 (2)
C100.043 (3)0.050 (3)0.043 (3)0.003 (2)0.000 (2)0.001 (2)
C110.059 (4)0.046 (3)0.060 (4)0.014 (3)0.004 (3)0.011 (3)
C120.071 (4)0.046 (3)0.062 (4)0.012 (3)0.001 (3)0.008 (3)
C130.056 (4)0.043 (3)0.071 (4)0.009 (3)0.007 (3)0.008 (3)
C140.055 (4)0.049 (3)0.075 (4)0.007 (3)0.004 (3)0.001 (3)
C150.071 (4)0.054 (3)0.059 (4)0.006 (3)0.004 (3)0.000 (3)
C160.065 (4)0.044 (3)0.093 (5)0.001 (3)0.009 (4)0.011 (3)
C170.090 (5)0.084 (5)0.058 (4)0.038 (4)0.000 (3)0.014 (3)
C180.080 (5)0.055 (4)0.085 (5)0.020 (3)0.016 (4)0.008 (4)
C190.053 (4)0.052 (3)0.046 (3)0.003 (3)0.008 (3)0.005 (2)
C200.049 (4)0.076 (4)0.057 (4)0.011 (3)0.004 (3)0.001 (3)
C210.054 (4)0.053 (3)0.049 (3)0.007 (3)0.002 (3)0.003 (2)
C220.057 (4)0.086 (4)0.061 (4)0.020 (3)0.010 (3)0.000 (3)
C230.062 (4)0.062 (3)0.057 (4)0.011 (3)0.018 (3)0.004 (3)
C240.063 (5)0.095 (4)0.050 (4)0.024 (3)0.015 (3)0.000 (3)
C250.054 (5)0.121 (6)0.086 (5)0.029 (4)0.020 (4)0.009 (4)
C26A0.038 (5)0.093 (6)0.096 (7)0.002 (4)0.014 (5)0.018 (5)
C27A0.097 (8)0.117 (8)0.135 (9)0.002 (6)0.020 (7)0.011 (7)
C28A0.109 (9)0.171 (10)0.167 (10)0.024 (7)0.031 (7)0.014 (8)
C26B0.149 (17)0.162 (17)0.157 (17)0.013 (10)0.031 (10)0.002 (10)
C27B0.099 (11)0.111 (11)0.114 (12)0.006 (8)0.015 (9)0.000 (9)
C28B0.147 (15)0.165 (15)0.148 (14)0.006 (9)0.037 (9)0.006 (9)
C290.081 (4)0.089 (4)0.048 (3)0.016 (3)0.002 (3)0.004 (3)
C30A0.089 (12)0.096 (11)0.092 (13)0.003 (8)0.010 (9)0.002 (9)
C31A0.087 (12)0.095 (14)0.085 (12)0.007 (8)0.015 (9)0.005 (9)
C32A0.112 (15)0.112 (12)0.106 (15)0.011 (9)0.021 (10)0.012 (10)
C30B0.083 (5)0.133 (6)0.052 (4)0.007 (4)0.000 (3)0.010 (4)
C31B0.114 (6)0.108 (5)0.089 (5)0.002 (4)0.002 (5)0.039 (4)
C32B0.083 (5)0.122 (6)0.045 (4)0.001 (4)0.003 (3)0.009 (4)
Geometric parameters (Å, º) top
N1—C41.357 (6)C29—C30A1.49 (4)
N1—C11.367 (6)C29—C31A1.49 (4)
N2—C61.354 (6)C29—C31B1.515 (9)
N2—C91.378 (6)C29—C30B1.570 (10)
C1—C10i1.397 (7)C29—C32B1.563 (10)
C1—C21.431 (6)C29—C32A1.55 (5)
C2—C31.329 (7)N1—H1A0.869 (3)
C3—C41.433 (7)C2—H20.941 (6)
C4—C51.393 (7)C3—H30.940 (5)
C5—C61.407 (7)C8—H80.940 (6)
C5—C111.454 (7)C14—H140.940 (6)
C6—C71.455 (7)C15—H150.940 (5)
C7—C81.355 (7)C16—H160.940 (6)
C8—C91.420 (7)C17—H170.940 (7)
C9—C101.415 (6)C18—H180.941 (7)
C10—C1i1.397 (7)C20—H200.940 (5)
C10—C191.488 (7)C21—H210.939 (6)
C11—C121.164 (7)C24—H240.940 (6)
C12—C131.462 (7)C26A—H26A0.97 (1)
C13—C141.377 (8)C26A—H26B0.97 (1)
C13—C151.409 (8)C26A—H26C0.97 (1)
C14—C161.371 (7)C27A—H27A0.97 (1)
C15—C171.369 (8)C27A—H27B0.97 (2)
C16—C181.364 (9)C27A—H27C0.97 (2)
C17—C181.355 (9)C28A—H28A0.97 (2)
C19—C201.385 (7)C28A—H28B0.97 (2)
C19—C211.390 (7)C28A—H28C0.97 (1)
C20—C221.408 (8)C30A—H30A0.97 (5)
C21—C231.395 (7)C30A—H30B0.97 (6)
C22—C241.383 (8)C30A—H30C0.97 (6)
C22—C251.506 (9)C31A—H31A0.97 (5)
C23—C241.386 (8)C31A—H31B0.96 (5)
C23—C291.502 (8)C31A—H31C0.97 (6)
C25—C26B1.14 (3)C32A—H32A0.97 (7)
C25—C27A1.400 (13)C32A—H32B0.97 (6)
C25—C26A1.473 (12)C32A—H32C0.97 (6)
C25—C28B1.57 (3)N1—H1A0.869 (3)
C25—C27B1.651 (16)C2—H20.941 (6)
C25—C28A1.676 (16)
C4—N1—C1108.7 (4)C28B—C25—C28A59.0 (12)
C6—N2—C9107.9 (4)C27B—C25—C28A143.9 (12)
N1—C1—C10i126.7 (4)C30A—C29—C31A116 (3)
N1—C1—C2107.9 (5)C30A—C29—C23106 (2)
C10i—C1—C2125.4 (5)C31A—C29—C23112 (2)
C3—C2—C1107.4 (5)C30A—C29—C31B142 (2)
C2—C3—C4108.6 (5)C31A—C29—C31B58 (2)
N1—C4—C5126.4 (4)C23—C29—C31B111.3 (5)
N1—C4—C3107.4 (5)C30A—C29—C30B65 (2)
C5—C4—C3126.1 (5)C31A—C29—C30B54 (2)
C4—C5—C6126.8 (4)C23—C29—C30B109.0 (6)
C4—C5—C11116.8 (4)C31B—C29—C30B110.0 (6)
C6—C5—C11116.4 (5)C30A—C29—C32B44 (2)
N2—C6—C5126.7 (5)C31A—C29—C32B136 (2)
N2—C6—C7109.1 (4)C23—C29—C32B112.4 (5)
C5—C6—C7124.2 (5)C31B—C29—C32B110.1 (7)
C8—C7—C6105.9 (5)C30B—C29—C32B103.9 (6)
C7—C8—C9108.7 (5)C30A—C29—C32A110 (3)
N2—C9—C8108.4 (4)C31A—C29—C32A112 (3)
N2—C9—C10125.5 (5)C23—C29—C32A101 (2)
C8—C9—C10126.0 (5)C31B—C29—C32A54 (2)
C1i—C10—C9124.6 (5)C30B—C29—C32A150 (2)
C1i—C10—C19117.9 (4)C32B—C29—C32A66 (2)
C9—C10—C19117.4 (5)C25—C26A—H26A110 (1)
C12—C11—C5178.0 (6)C25—C26A—H26B109 (1)
C11—C12—C13178.2 (6)C25—C26A—H26C109 (1)
C14—C13—C15118.9 (5)H26A—C26A—H26B109 (1)
C14—C13—C12120.2 (6)H26A—C26A—H26C109 (1)
C15—C13—C12120.9 (5)H26B—C26A—H26C109 (1)
C16—C14—C13120.7 (6)C25—C27A—H27A109 (1)
C17—C15—C13118.2 (6)C25—C27A—H27B110 (1)
C18—C16—C14120.3 (6)C25—C27A—H27C109 (1)
C18—C17—C15122.4 (7)H27A—C27A—H27B109 (1)
C17—C18—C16119.4 (6)H27A—C27A—H27C109 (1)
C20—C19—C21118.9 (5)H27B—C27A—H27C109 (1)
C20—C19—C10120.3 (5)C25—C28A—H28A109 (1)
C21—C19—C10120.8 (5)C25—C28A—H28B109 (1)
C19—C20—C22122.2 (5)C25—C28A—H28C109 (1)
C23—C21—C19121.6 (5)H28A—C28A—H28B109 (2)
C24—C22—C20115.8 (6)H28A—C28A—H28C110 (2)
C24—C22—C25123.6 (6)H28B—C28A—H28C109 (2)
C20—C22—C25120.6 (5)C23—C29—C30A106 (2)
C24—C23—C21116.7 (5)C23—C29—C31A111 (2)
C24—C23—C29121.1 (5)C23—C29—C32A101 (2)
C21—C23—C29122.1 (6)C30A—C29—C31A116 (3)
C22—C24—C23124.8 (6)C30A—C29—C32A110 (3)
C26B—C25—C27A131 (2)C31A—C29—C32A112 (3)
C26B—C25—C26A36.7 (19)C29—C30A—H30A109 (5)
C27A—C25—C26A113.9 (9)C29—C30A—H30B109 (5)
C26B—C25—C22113 (2)C29—C30A—H30C109 (5)
C27A—C25—C22115.8 (9)H30A—C30A—H30B110 (5)
C26A—C25—C22115.9 (6)H30A—C30A—H30C110 (5)
C26B—C25—C28B117 (2)H30B—C30A—H30C110 (5)
C27A—C25—C28B48.9 (12)C29—C31A—H31A109 (5)
C26A—C25—C28B136.7 (14)C29—C31A—H31B110 (5)
C22—C25—C28B106.5 (13)C29—C31A—H31C109 (5)
C26B—C25—C27B120 (2)H31A—C31A—H31B110 (5)
C27A—C25—C27B45.0 (9)H31A—C31A—H31C109 (5)
C26A—C25—C27B85.5 (11)H31B—C31A—H31C110 (5)
C22—C25—C27B102.9 (11)C29—C32A—H32A110 (5)
C28B—C25—C27B93.6 (14)C29—C32A—H32B110 (5)
C26B—C25—C28A64 (2)C29—C32A—H32C110 (5)
C27A—C25—C28A102.6 (10)H32A—C32A—H32B109 (6)
C26A—C25—C28A98.7 (9)H32A—C32A—H32C109 (6)
C22—C25—C28A107.1 (7)H32B—C32A—H32C109 (6)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.872.442.972 (6)120
N1—H1A···N2i0.872.352.891 (5)121
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC64H62N4
Mr887.18
Crystal system, space groupTriclinic, P1
Temperature (K)213
a, b, c (Å)9.9598 (19), 10.496 (2), 13.925 (3)
α, β, γ (°)86.236 (4), 80.266 (4), 82.765 (4)
V3)1421.8 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.45 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.974, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6144, 4136, 2068
Rint0.101
θmax (°)23.5
(sin θ/λ)max1)0.561
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.107, 0.315, 0.99
No. of reflections4136
No. of parameters363
No. of restraints193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.30

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.872.442.972 (6)120
N1—H1A···N2i0.872.352.891 (5)121
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Ministry of Education, Science Technology (MEST) and the Korean Institute for the Advancement of Technology (KIAT) through the Human Resource Training Project for Regional Innovation. We also acknowledge the New University for Regional Innovation funded by the Ministry of Education, Science Technology (MEST) for support. We thank Dr Hyunuk Kim for the data collection.

References

First citationAnderson, H. L., Martin, S. J. & Bradley, D. D. C. (1994). Angew. Chem. Int. Ed. Engl. 33, 655–657.  CrossRef Web of Science Google Scholar
First citationAnderson, H. L., Wylie, A. P. & Prout, K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1607–1611.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, T., Uekusa, H., Ohkubo, A., Shimura, T., Aramaki, K., Nishihara, H. & Ohba, S. (1995). Acta Cryst. C51, 2265–2269.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenari, F. Z., Blau, W. J., Milgrom, L. R., Yahioglu, G., Phillips, D. & Lacey, J. A. (1997). Chem. Phys. Lett. 267, 229–233.  CrossRef CAS Web of Science Google Scholar
First citationHuuskonen, S.-P. J., Wilson, G. S. & Anderson, H. L. (1998). Acta Cryst. C54, 662–664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeCours, S. M., DiMagno, S. G. & Therien, M. J. (1996). J. Am. Chem. Soc. 118, 11854–11864.  CSD CrossRef CAS Web of Science Google Scholar
First citationScreen, T. E. O., Thorne, J. R. G., Denning, R. G., Bucknall, D. G. & Anderson, H. L. (2002). J. Am. Chem. Soc. 124, 9712–9713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, J.-W., Jang, S. Y., Kim, D. & Kim, H.-J. (2008). Tetrahedron, 64, 2733–2739.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331–3337.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3004-o3005
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds