metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(2,2′-bi-1H-imidazole-κ2N3,N3′)nickel(II) bis­­(3-methyl­benzoate) 3-methyl­benzoic acid disolvate

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China
*Correspondence e-mail: hedazhouhui@163.com

(Received 14 October 2009; accepted 27 October 2009; online 4 November 2009)

In the title compound, [Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2, the NiII atom (site symmetry [\overline{1}]) is coordinated by two N,N′-bidentate 2,2′-biimidazole ligands and two water mol­ecules, resulting in a slightly distorted trans-NiO2N4 geometry for the metal ion. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating an infinite two-dimensional network running parallel to (100). The methyl group of the benzoic acid mol­ecule is disordered over two sites in a 0.563 (17):0.437 (17) ratio.

Related literature

For a related structure, see: Yang et al. (2009[Yang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). CrystEngComm, 11, 1114-1121.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2

  • Mr = 905.60

  • Monoclinic, C 2/c

  • a = 34.747 (15) Å

  • b = 9.237 (4) Å

  • c = 14.099 (6) Å

  • β = 93.564 (8)°

  • V = 4516 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.939

  • 12088 measured reflections

  • 4417 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.269

  • S = 1.00

  • 4417 reflections

  • 287 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.27 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.092 (3)
Ni1—N4 2.097 (3)
Ni1—O1W 2.105 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.852 (8) 1.759 (9) 2.606 (4) 172 (3)
O1W—H1WB⋯O3 0.849 (7) 2.094 (10) 2.897 (4) 158 (2)
O1W—H1WA⋯O1 0.847 (7) 1.819 (8) 2.649 (3) 166 (2)
N3—H3A⋯O2ii 0.890 (9) 1.920 (12) 2.763 (3) 157 (2)
N2—H2A⋯O1ii 0.889 (8) 1.854 (9) 2.732 (3) 169.4 (19)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

2,2'-Biimidazole is an interesting ligand because it has two N sites and two –NH donors. Both N-donors having the stronger coordination ability and flexible coordination modes. Moreover, two –NH donors can interact with other hydrogen bonding acceptors via hydrogen bonds (Yang et al., 2009). Herein, we report the title compound, (I).

In the symmetric unit of (I), Ni2+ having an inversion centre is coordinated by two water molecules occupied the axial sites and two 2,2'-biimidazole ligands through respective two N atoms occupied the equatorial plane, which results in a more regular octahedron (Ni1—N1 2.092 (3) Å; Ni1—N4 2.097 (3) Å; Ni1—O1W 2.105 (3) Å). Each water molecule interacts with 3-methyl-benzenecarboxylate and 3-methyl-benzenecarboxylic acid through O1W—H1WA···O1 and O1W—H1WA···O3 hydrogen bonds (Fig. 1). Adjacent units are linked together by two pairs of N2—H2A···O1 and N3—H3A···O1, and one O4—H4···O2 hydrogen bonds into an infinite two-dimensional network along the (100) direction (Fig. 2).

Related literature top

For a related structure, see: Yang et al. (2009).

Experimental top

NiSO4.6H2O(0.18 g, 0.70 mmol) was added into the aqueous solution (15 ml) including 3-methyl-benzenecarboxylic acid (0.14 g, 1.0 mmol) and NaOH (0.04 g, 1.0 mmol) and refluxed for 30 min. Then an ethanol solution (10 ml) containing 2,2'-biimidazole (0.08 g, 0.60 mmol) was slowly added with continuous stirring. The resulting solution was refluxed for 3 h, filtered and kept for crystallization. After nine days, green blocks of (I) were obtained.

Refinement top

H atoms bonded to N atoms, carboxyl and water O atoms are located from the difference maps and refined isotropically with 0.89 (1) Å for N—H, 0.85 (1) Å for O—H and the distance H···H = 1.34 (1) Å from water molecule using DFIX commands, respectively. All the remaining H atoms were positioned geometrically with C–H = 0.93 Å (aromatic) and 0.96 Å (methyl) and were refined as riding with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(C) (methyl). The disordered methyl carbon was devided into two parts C22 and C22' with the anisotrophic displacement parameters 0.102 and 0.117, respectively. H atoms bound to them are not added.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H-bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for the clarity. Unlabeled atoms are related to labeled atoms by the symmetry transformation 1/2 - x, 1/2 - y, -z.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network along the (100) direction. Hydrogen bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for the clarity.
Diaquabis(2,2'-bi-1H-imidazole-κ2N3,N3')nickel(II) bis(3-methylbenzoate) 3-methylbenzoic acid disolvate top
Crystal data top
[Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2F(000) = 1896
Mr = 905.60Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2285 reflections
a = 34.747 (15) Åθ = 2.3–22.7°
b = 9.237 (4) ŵ = 0.50 mm1
c = 14.099 (6) ÅT = 296 K
β = 93.564 (8)°Block, green
V = 4516 (3) Å30.25 × 0.19 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 4142
Tmin = 0.886, Tmax = 0.939k = 1110
12088 measured reflectionsl = 1217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.269 w = 1/[σ2(Fo2) + (0.1377P)2 + 26.2495P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4417 reflectionsΔρmax = 2.27 e Å3
287 parametersΔρmin = 0.39 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (2)
Crystal data top
[Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2V = 4516 (3) Å3
Mr = 905.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 34.747 (15) ŵ = 0.50 mm1
b = 9.237 (4) ÅT = 296 K
c = 14.099 (6) Å0.25 × 0.19 × 0.13 mm
β = 93.564 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2926 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.939Rint = 0.057
12088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09112 restraints
wR(F2) = 0.269H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1377P)2 + 26.2495P]
where P = (Fo2 + 2Fc2)/3
4417 reflectionsΔρmax = 2.27 e Å3
287 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.25000.25000.00000.03434 (15)
N10.23426 (8)0.0763 (3)0.08464 (19)0.0378 (7)
N20.20745 (8)0.0135 (3)0.2167 (2)0.0439 (8)
H2A0.1934 (3)0.014 (4)0.2673 (7)0.052 (11)*
N30.18763 (9)0.3465 (3)0.2311 (2)0.0497 (8)
H3A0.1819 (7)0.2986 (18)0.2832 (8)0.052 (4)*
N40.21821 (9)0.3628 (3)0.0979 (2)0.0428 (8)
O30.37232 (9)0.1134 (4)0.1108 (3)0.0818 (11)
O40.40602 (10)0.0866 (4)0.1032 (3)0.0912 (13)
H40.3851 (3)0.1337 (17)0.108 (2)0.040 (10)*
O1W0.29960 (7)0.2675 (2)0.09288 (19)0.0485 (7)
H1WA0.3112 (4)0.3481 (6)0.094 (2)0.024 (8)*
H1WB0.3173 (3)0.2048 (8)0.090 (3)0.065 (13)*
C10.23884 (11)0.0697 (4)0.0987 (3)0.0453 (10)
H10.25150.13210.05930.054*
C20.22193 (11)0.1089 (4)0.1793 (2)0.0455 (10)
H20.22060.20190.20410.055*
C30.21533 (10)0.1215 (4)0.1581 (2)0.0370 (8)
C40.20634 (10)0.2754 (4)0.1646 (3)0.0406 (9)
C50.18747 (12)0.4897 (4)0.2047 (3)0.0561 (11)
H50.17670.56610.23680.067*
C60.20573 (12)0.4988 (4)0.1241 (3)0.0563 (11)
H60.20950.58390.09060.068*
C150.40297 (13)0.0524 (5)0.1077 (3)0.0600 (12)
C160.44042 (13)0.1300 (6)0.1130 (3)0.0694 (14)
C170.44083 (15)0.2790 (6)0.1168 (3)0.0726 (15)
H170.41750.32790.11840.087*
C180.47472 (17)0.3594 (7)0.1183 (4)0.1015 (19)
C190.5081 (2)0.2839 (10)0.1168 (6)0.144 (3)
H190.53120.33470.11640.173*
C200.50918 (19)0.1346 (10)0.1159 (6)0.138 (3)
H200.53280.08680.11880.166*
C210.47463 (5)0.05430 (17)0.11043 (11)0.116 (3)
H210.47480.04610.10530.140*
C220.47839 (5)0.50541 (17)0.12443 (11)0.102 (5)*0.437 (17)
C22'0.46819 (5)0.54041 (17)0.12053 (11)0.117 (4)*0.563 (17)
O10.32801 (5)0.53214 (17)0.11606 (11)0.0665 (9)
O20.34258 (5)0.76257 (17)0.10071 (11)0.0758 (10)
C70.34256 (5)0.63145 (17)0.07347 (11)0.0528 (11)
C80.36146 (5)0.59948 (17)0.01813 (11)0.0536 (11)
C90.37173 (5)0.45833 (17)0.04007 (11)0.0560 (11)
H90.36620.38440.00170.067*
C100.38992 (13)0.4239 (6)0.1220 (3)0.0663 (14)
C110.39556 (13)0.5355 (7)0.1846 (3)0.0798 (17)
H110.40690.51500.24110.096*
C120.38518 (13)0.6747 (7)0.1668 (3)0.0777 (15)
H120.38870.74670.21160.093*
C130.36927 (13)0.7085 (5)0.0815 (3)0.0660 (13)
H130.36390.80430.06700.079*
C140.40365 (16)0.2721 (6)0.1383 (4)0.0880 (17)
H14A0.40710.25820.20470.132*
H14B0.38490.20440.11790.132*
H14C0.42770.25660.10270.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0416 (3)0.0285 (3)0.0337 (3)0.0008 (3)0.0086 (2)0.0003 (2)
N10.0382 (15)0.0335 (14)0.0427 (15)0.0014 (12)0.0097 (12)0.0007 (12)
N20.0453 (16)0.0449 (16)0.0422 (15)0.0005 (13)0.0087 (13)0.0048 (13)
N30.0542 (17)0.0502 (16)0.0464 (16)0.0046 (14)0.0160 (13)0.0003 (14)
N40.0506 (16)0.0339 (14)0.0457 (15)0.0016 (13)0.0165 (13)0.0025 (12)
O30.0574 (18)0.069 (2)0.120 (3)0.0004 (16)0.0135 (18)0.0039 (19)
O40.070 (2)0.069 (2)0.135 (3)0.0079 (18)0.016 (2)0.008 (2)
O1W0.0504 (14)0.0431 (14)0.0523 (14)0.0011 (12)0.0068 (11)0.0002 (11)
C10.054 (2)0.0344 (17)0.0485 (19)0.0021 (16)0.0121 (16)0.0034 (15)
C20.060 (2)0.0359 (17)0.0407 (18)0.0001 (16)0.0068 (16)0.0080 (15)
C30.0375 (17)0.0382 (17)0.0353 (16)0.0004 (14)0.0028 (13)0.0007 (14)
C40.0418 (18)0.0376 (18)0.0432 (18)0.0012 (14)0.0074 (14)0.0022 (14)
C50.067 (2)0.045 (2)0.058 (2)0.0105 (19)0.0118 (19)0.0050 (18)
C60.077 (3)0.0348 (18)0.059 (2)0.0029 (18)0.025 (2)0.0019 (17)
C150.058 (2)0.068 (3)0.055 (2)0.001 (2)0.0119 (19)0.001 (2)
C160.050 (2)0.105 (4)0.054 (2)0.007 (2)0.0080 (19)0.012 (2)
C170.068 (3)0.092 (3)0.057 (3)0.022 (3)0.005 (2)0.006 (2)
C180.095 (4)0.146 (5)0.065 (3)0.057 (3)0.020 (3)0.025 (3)
C190.076 (4)0.233 (8)0.126 (6)0.068 (5)0.022 (4)0.042 (5)
C200.053 (3)0.207 (8)0.153 (7)0.003 (5)0.001 (4)0.027 (7)
C210.077 (4)0.145 (6)0.128 (5)0.009 (4)0.010 (4)0.038 (5)
O10.0949 (19)0.0607 (16)0.0472 (14)0.0204 (15)0.0307 (14)0.0076 (13)
O20.101 (2)0.0515 (16)0.0805 (19)0.0076 (16)0.0458 (16)0.0024 (14)
C70.056 (2)0.054 (2)0.049 (2)0.0049 (19)0.0106 (17)0.0028 (18)
C80.054 (2)0.070 (2)0.0381 (18)0.005 (2)0.0124 (16)0.0022 (18)
C90.052 (2)0.068 (2)0.048 (2)0.003 (2)0.0063 (18)0.0046 (19)
C100.051 (2)0.094 (3)0.053 (2)0.000 (2)0.0013 (19)0.015 (2)
C110.057 (2)0.135 (4)0.049 (2)0.009 (3)0.0175 (19)0.006 (3)
C120.060 (3)0.118 (4)0.057 (2)0.003 (3)0.018 (2)0.027 (3)
C130.055 (2)0.081 (3)0.063 (2)0.001 (2)0.015 (2)0.020 (2)
C140.083 (3)0.102 (4)0.080 (3)0.015 (3)0.015 (3)0.038 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.092 (3)C16—C211.381 (5)
Ni1—N12.092 (3)C16—C171.378 (7)
Ni1—N4i2.097 (3)C17—C181.391 (7)
Ni1—N42.097 (3)C17—H170.9300
Ni1—O1Wi2.105 (3)C18—C191.354 (10)
Ni1—O1W2.105 (3)C18—C221.357 (7)
N1—C31.328 (4)C18—C22'1.688 (7)
N1—C11.371 (4)C19—C201.380 (12)
N2—C31.335 (4)C19—H190.9300
N2—C21.357 (5)C20—C211.409 (8)
N2—H2A0.889 (8)C20—H200.9300
N3—C41.345 (5)C21—H210.9300
N3—C51.374 (5)O1—C71.2229
N3—H3A0.890 (9)O2—C71.2706
N4—C41.325 (4)C7—C81.5138
N4—C61.387 (5)C8—C131.384 (5)
O3—C151.208 (5)C8—C91.3917
O4—C151.290 (6)C9—C101.388 (5)
O4—H40.852 (8)C9—H90.9300
O1W—H1WA0.847 (7)C10—C111.379 (7)
O1W—H1WB0.849 (7)C10—C141.503 (7)
C1—C21.362 (5)C11—C121.362 (8)
C1—H10.9300C11—H110.9300
C2—H20.9300C12—C131.391 (7)
C3—C41.460 (5)C12—H120.9300
C5—C61.338 (6)C13—H130.9300
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C15—C161.483 (6)C14—H14C0.9600
N1i—Ni1—N1180.0O3—C15—C16123.0 (4)
N1i—Ni1—N4i80.71 (11)O4—C15—C16114.2 (4)
N1—Ni1—N4i99.29 (11)C21—C16—C17120.0 (4)
N1i—Ni1—N499.29 (11)C21—C16—C15120.5 (4)
N1—Ni1—N480.71 (11)C17—C16—C15119.5 (4)
N4i—Ni1—N4180.0C16—C17—C18122.7 (5)
N1i—Ni1—O1Wi86.39 (10)C16—C17—H17118.6
N1—Ni1—O1Wi93.61 (10)C18—C17—H17118.6
N4i—Ni1—O1Wi89.82 (11)C19—C18—C22115.8 (5)
N4—Ni1—O1Wi90.18 (11)C19—C18—C17116.7 (7)
N1i—Ni1—O1W93.61 (10)C22—C18—C17127.4 (5)
N1—Ni1—O1W86.39 (10)C19—C18—C22'128.8 (5)
N4i—Ni1—O1W90.18 (11)C22—C18—C22'13.21 (8)
N4—Ni1—O1W89.82 (11)C17—C18—C22'114.5 (5)
O1Wi—Ni1—O1W180.0C18—C19—C20122.6 (7)
C3—N1—C1104.8 (3)C18—C19—H19118.7
C3—N1—Ni1111.3 (2)C20—C19—H19118.7
C1—N1—Ni1143.6 (2)C19—C20—C21120.1 (6)
C3—N2—C2106.7 (3)C19—C20—H20119.9
C3—N2—H2A129 (2)C21—C20—H20119.9
C2—N2—H2A124 (2)C16—C21—C20117.6 (4)
C4—N3—C5106.0 (3)C16—C21—H21121.2
C4—N3—H3A118.4 (13)C20—C21—H21121.2
C5—N3—H3A134.8 (12)O1—C7—O2124.0
C4—N4—C6104.3 (3)O1—C7—C8119.1
C4—N4—Ni1111.4 (2)O2—C7—C8116.9
C6—N4—Ni1144.3 (2)C13—C8—C9118.4 (2)
C15—O4—H4115.6 (12)C13—C8—C7121.4 (2)
Ni1—O1W—H1WA116.6 (14)C9—C8—C7120.2
Ni1—O1W—H1WB119 (2)C10—C9—C8122.4 (2)
H1WA—O1W—H1WB104.7 (10)C10—C9—H9118.8
C2—C1—N1109.3 (3)C8—C9—H9118.8
C2—C1—H1125.4C11—C10—C9116.8 (4)
N1—C1—H1125.4C11—C10—C14122.7 (4)
N2—C2—C1107.0 (3)C9—C10—C14120.4 (4)
N2—C2—H2126.5C12—C11—C10122.6 (4)
C1—C2—H2126.5C12—C11—H11118.7
N1—C3—N2112.3 (3)C10—C11—H11118.7
N1—C3—C4118.2 (3)C11—C12—C13119.6 (5)
N2—C3—C4129.5 (3)C11—C12—H12120.2
N4—C4—N3112.5 (3)C13—C12—H12120.2
N4—C4—C3118.1 (3)C8—C13—C12120.0 (4)
N3—C4—C3129.4 (3)C8—C13—H13120.0
C6—C5—N3107.3 (3)C12—C13—H13120.0
C6—C5—H5126.4C10—C14—H14A109.5
N3—C5—H5126.4C10—C14—H14B109.5
C5—C6—N4110.0 (3)H14A—C14—H14B109.5
C5—C6—H6125.0C10—C14—H14C109.5
N4—C6—H6125.0H14A—C14—H14C109.5
O3—C15—O4122.8 (4)H14B—C14—H14C109.5
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2ii0.85 (1)1.76 (1)2.606 (4)172 (3)
O1W—H1WB···O30.85 (1)2.09 (1)2.897 (4)158 (2)
O1W—H1WA···O10.85 (1)1.82 (1)2.649 (3)166 (2)
N3—H3A···O2iii0.89 (1)1.92 (1)2.763 (3)157 (2)
N2—H2A···O1iii0.89 (1)1.85 (1)2.732 (3)169 (2)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2
Mr905.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)34.747 (15), 9.237 (4), 14.099 (6)
β (°) 93.564 (8)
V3)4516 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.25 × 0.19 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.886, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
12088, 4417, 2926
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.269, 1.00
No. of reflections4417
No. of parameters287
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.1377P)2 + 26.2495P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.27, 0.39

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—N12.092 (3)Ni1—O1W2.105 (3)
Ni1—N42.097 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.852 (8)1.759 (9)2.606 (4)172 (3)
O1W—H1WB···O30.849 (7)2.094 (10)2.897 (4)158 (2)
O1W—H1WA···O10.847 (7)1.819 (8)2.649 (3)166 (2)
N3—H3A···O2ii0.890 (9)1.920 (12)2.763 (3)157 (2)
N2—H2A···O1ii0.889 (8)1.854 (9)2.732 (3)169.4 (19)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
 

References

First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). CrystEngComm, 11, 1114–1121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds