organic compounds
Benzene-1,3,5-triyl triacetate
aSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: d.l.hughes@uea.ac.uk
The 12H12O6, contains two essentially identical molecules related by a pseudo-inversion centre. The three acetoxy groups in each molecule are essentially planar and are tilted, in a regular propeller-style arrangement, with their normals oriented between 56.72 (12) and 76.35 (9)° from the normal to the mean plane of the central C6 ring; in each molecule the three carbonyl O atoms are on the same side of the C6 ring, with the Cring—O—C—Me bonds in a trans conformation. The principal intermolecular contacts appear to be C—H⋯π-ring interactions; each C6 ring has such a contact to both faces of the ring; in addition, each molecule has two intermolecular C—H⋯O contacts with H⋯O distances less than 2.55 Å.
of the title compound, CRelated literature
For our previous studies in this area, see: Haines & Hughes (2007); Haines et al. (2008, 2009). For a related structure, see: Haines & Hughes (2009).
/p>Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro CCD (Oxford Diffraction, 2008); cell CrysAlisPro RED (Oxford Diffraction, 2008); data reduction: CrysAlisPro RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809050016/hb5176sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050016/hb5176Isup2.hkl
The title compound was prepared by the conventional acylation of the parent 1,3,5-trihydroxybenzene and has been described previously (Hegetschweiler et al., 1990); the physical data (m.p., 1H and 13C NMR spectra) of our product agreed with those reported.
To a solution of anhydrous 1,3,5-trihydroxybenzene (phloroglucinol) (1.26 g) in pyridine (6 ml) was added acetic anhydride (5.6 ml) and after 12 h the solution was poured into iced water which led to formation of a white precipitate. After stirring for 2 h, the solid was collected by filtration, and recrystallized from ethanol to give compound 1 (1.67 g, 66%), m.p. 106–107 °C (lit. {Hegetschweiler et al., 1990} 106 °C); δH(CDCl3) 6.84, (s, 3H), 2.27 (s, 9H); δC(CDCl3) 168.65, 151.19, 112.76, 20.91. The NMR data are in full agreement with the reported literature values (Hegetschweiler et al., 1990).
Hydrogen atoms were included in idealized positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2008); cell
CrysAlis PRO RED (Oxford Diffraction, 2008); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the two independent molecules in (I), related by a pseudo-inversion centre at ca 0, 1/4, 1/2. Displacement ellipsoids are drawn at the 50% probability level. |
C12H12O6 | Z = 8 |
Mr = 252.22 | F(000) = 1056 |
Monoclinic, P21/n | Dx = 1.429 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 6.20290 (16) Å | µ = 0.12 mm−1 |
b = 24.6643 (6) Å | T = 140 K |
c = 15.3862 (4) Å | Prism, colourless |
β = 95.297 (2)° | 0.38 × 0.18 × 0.17 mm |
V = 2343.88 (11) Å3 |
Oxford Diffraction Xcalibur 3/CCD diffractometer | 4128 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.0050 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
Thin–slice ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2008) | k = −29→29 |
Tmin = 0.931, Tmax = 1.041 | l = −18→18 |
40881 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.196 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1157P)2 + 0.643P] where P = (Fo2 + 2Fc2)/3 |
4128 reflections | (Δ/σ)max = 0.001 |
331 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C12H12O6 | V = 2343.88 (11) Å3 |
Mr = 252.22 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.20290 (16) Å | µ = 0.12 mm−1 |
b = 24.6643 (6) Å | T = 140 K |
c = 15.3862 (4) Å | 0.38 × 0.18 × 0.17 mm |
β = 95.297 (2)° |
Oxford Diffraction Xcalibur 3/CCD diffractometer | 4128 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2008) | 2769 reflections with I > 2σ(I) |
Tmin = 0.931, Tmax = 1.041 | Rint = 0.054 |
40881 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.196 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.65 e Å−3 |
4128 reflections | Δρmin = −0.26 e Å−3 |
331 parameters |
Experimental. CrysAlisPro RED, Oxford Diffraction Ltd., Version 1.171.32.24 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1644 (5) | 0.22484 (12) | 0.2555 (2) | 0.0171 (7) | |
C2 | 0.2182 (5) | 0.21091 (12) | 0.17203 (19) | 0.0171 (7) | |
H2 | 0.1296 | 0.2200 | 0.1221 | 0.020* | |
C3 | 0.4090 (5) | 0.18306 (12) | 0.16789 (19) | 0.0188 (7) | |
C4 | 0.5456 (5) | 0.16979 (12) | 0.24048 (19) | 0.0177 (7) | |
H4 | 0.6756 | 0.1518 | 0.2353 | 0.021* | |
C5 | 0.4830 (5) | 0.18408 (13) | 0.32137 (19) | 0.0191 (7) | |
C6 | 0.2907 (5) | 0.21159 (12) | 0.33028 (19) | 0.0176 (7) | |
H6 | 0.2493 | 0.2207 | 0.3850 | 0.021* | |
O1 | −0.0344 (3) | 0.24931 (9) | 0.26764 (13) | 0.0208 (5) | |
C11 | −0.0865 (5) | 0.29755 (13) | 0.2254 (2) | 0.0216 (7) | |
O11 | 0.0352 (4) | 0.32021 (9) | 0.18212 (16) | 0.0330 (6) | |
C12 | −0.3065 (5) | 0.31541 (14) | 0.2446 (2) | 0.0255 (8) | |
H12A | −0.3271 | 0.3527 | 0.2281 | 0.038* | |
H12B | −0.3206 | 0.3115 | 0.3059 | 0.038* | |
H12C | −0.4137 | 0.2935 | 0.2122 | 0.038* | |
O3 | 0.4578 (3) | 0.16404 (8) | 0.08570 (13) | 0.0210 (5) | |
C31 | 0.6135 (5) | 0.19045 (13) | 0.0455 (2) | 0.0211 (7) | |
O31 | 0.7100 (4) | 0.22877 (10) | 0.07680 (15) | 0.0301 (6) | |
C32 | 0.6401 (5) | 0.16603 (14) | −0.04125 (19) | 0.0255 (8) | |
H32A | 0.5192 | 0.1759 | −0.0816 | 0.038* | |
H32B | 0.6469 | 0.1273 | −0.0359 | 0.038* | |
H32C | 0.7714 | 0.1792 | −0.0622 | 0.038* | |
O5 | 0.6130 (3) | 0.16564 (9) | 0.39428 (13) | 0.0233 (5) | |
C51 | 0.7090 (5) | 0.20210 (14) | 0.4523 (2) | 0.0222 (7) | |
O51 | 0.6831 (4) | 0.25004 (10) | 0.44501 (15) | 0.0325 (6) | |
C52 | 0.8440 (5) | 0.17336 (15) | 0.5235 (2) | 0.0265 (8) | |
H52A | 0.9872 | 0.1885 | 0.5292 | 0.040* | |
H52B | 0.8518 | 0.1355 | 0.5096 | 0.040* | |
H52C | 0.7797 | 0.1776 | 0.5775 | 0.040* | |
C91 | 0.8316 (5) | 0.52607 (12) | 0.23650 (19) | 0.0169 (7) | |
C92 | 0.7795 (5) | 0.53882 (12) | 0.32051 (19) | 0.0155 (7) | |
H92 | 0.8699 | 0.5293 | 0.3697 | 0.019* | |
C93 | 0.5880 (5) | 0.56608 (12) | 0.32707 (19) | 0.0177 (7) | |
C94 | 0.4486 (5) | 0.58031 (12) | 0.25507 (19) | 0.0181 (7) | |
H94 | 0.3188 | 0.5981 | 0.2614 | 0.022* | |
C95 | 0.5094 (5) | 0.56707 (12) | 0.17385 (18) | 0.0170 (7) | |
C96 | 0.7021 (5) | 0.54049 (11) | 0.16326 (19) | 0.0162 (7) | |
H96 | 0.7423 | 0.5327 | 0.1079 | 0.019* | |
O91 | 1.0296 (3) | 0.50177 (9) | 0.22335 (13) | 0.0189 (5) | |
C911 | 1.0768 (5) | 0.45224 (13) | 0.26152 (19) | 0.0184 (7) | |
O911 | 0.9526 (4) | 0.42894 (9) | 0.30330 (16) | 0.0317 (6) | |
C912 | 1.2938 (6) | 0.43354 (14) | 0.2422 (2) | 0.0240 (7) | |
H91A | 1.3171 | 0.3972 | 0.2635 | 0.036* | |
H91B | 1.4021 | 0.4571 | 0.2703 | 0.036* | |
H91C | 1.3030 | 0.4342 | 0.1803 | 0.036* | |
O93 | 0.5437 (3) | 0.58395 (9) | 0.41005 (13) | 0.0224 (5) | |
C931 | 0.3854 (5) | 0.55818 (14) | 0.4494 (2) | 0.0211 (7) | |
O931 | 0.2877 (4) | 0.52004 (11) | 0.41682 (15) | 0.0315 (6) | |
C932 | 0.3602 (6) | 0.58228 (15) | 0.5361 (2) | 0.0290 (9) | |
H93A | 0.2355 | 0.5669 | 0.5594 | 0.043* | |
H93B | 0.3420 | 0.6208 | 0.5302 | 0.043* | |
H93C | 0.4870 | 0.5747 | 0.5749 | 0.043* | |
O95 | 0.3780 (3) | 0.58607 (9) | 0.10101 (13) | 0.0217 (5) | |
C951 | 0.2842 (5) | 0.54966 (13) | 0.04289 (19) | 0.0196 (7) | |
O951 | 0.3003 (3) | 0.50160 (9) | 0.05213 (13) | 0.0241 (5) | |
C952 | 0.1636 (5) | 0.57803 (15) | −0.0327 (2) | 0.0273 (8) | |
H95A | 0.2478 | 0.5771 | −0.0819 | 0.041* | |
H95B | 0.1380 | 0.6150 | −0.0171 | 0.041* | |
H95C | 0.0277 | 0.5601 | −0.0474 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0166 (16) | 0.0130 (15) | 0.0220 (16) | −0.0003 (13) | 0.0030 (12) | 0.0001 (12) |
C2 | 0.0153 (16) | 0.0180 (17) | 0.0176 (15) | −0.0033 (14) | −0.0001 (12) | 0.0030 (13) |
C3 | 0.0249 (17) | 0.0158 (16) | 0.0158 (15) | −0.0062 (14) | 0.0019 (13) | −0.0008 (12) |
C4 | 0.0195 (16) | 0.0127 (16) | 0.0208 (16) | −0.0002 (13) | 0.0012 (13) | −0.0017 (12) |
C5 | 0.0215 (16) | 0.0151 (16) | 0.0195 (16) | −0.0029 (13) | −0.0047 (13) | 0.0001 (12) |
C6 | 0.0208 (17) | 0.0176 (17) | 0.0150 (15) | −0.0015 (14) | 0.0051 (12) | −0.0013 (13) |
O1 | 0.0186 (11) | 0.0217 (12) | 0.0225 (12) | 0.0032 (9) | 0.0034 (9) | 0.0036 (9) |
C11 | 0.0286 (18) | 0.0173 (17) | 0.0186 (16) | −0.0003 (14) | 0.0005 (14) | −0.0033 (13) |
O11 | 0.0367 (14) | 0.0195 (13) | 0.0459 (15) | 0.0016 (11) | 0.0193 (12) | 0.0053 (11) |
C12 | 0.0261 (17) | 0.0234 (19) | 0.0261 (18) | 0.0035 (17) | −0.0022 (14) | −0.0001 (14) |
O3 | 0.0263 (12) | 0.0209 (12) | 0.0159 (11) | −0.0037 (10) | 0.0025 (9) | −0.0021 (9) |
C31 | 0.0166 (16) | 0.0240 (18) | 0.0227 (17) | 0.0027 (14) | 0.0020 (13) | 0.0025 (14) |
O31 | 0.0279 (13) | 0.0334 (14) | 0.0294 (13) | −0.0088 (11) | 0.0052 (10) | −0.0059 (11) |
C32 | 0.0285 (18) | 0.033 (2) | 0.0159 (16) | 0.0031 (15) | 0.0049 (14) | 0.0009 (14) |
O5 | 0.0276 (12) | 0.0208 (12) | 0.0203 (11) | 0.0033 (10) | −0.0051 (9) | −0.0036 (9) |
C51 | 0.0174 (16) | 0.0282 (19) | 0.0214 (17) | 0.0000 (14) | 0.0050 (13) | −0.0055 (14) |
O51 | 0.0434 (15) | 0.0262 (14) | 0.0262 (13) | −0.0040 (12) | −0.0056 (11) | −0.0018 (11) |
C52 | 0.0247 (18) | 0.036 (2) | 0.0184 (16) | 0.0039 (16) | −0.0025 (14) | −0.0049 (14) |
C91 | 0.0150 (16) | 0.0148 (15) | 0.0210 (16) | −0.0036 (13) | 0.0019 (13) | 0.0006 (12) |
C92 | 0.0179 (16) | 0.0137 (16) | 0.0144 (15) | −0.0037 (13) | −0.0010 (12) | 0.0004 (12) |
C93 | 0.0224 (16) | 0.0153 (16) | 0.0158 (15) | −0.0030 (13) | 0.0031 (12) | −0.0027 (12) |
C94 | 0.0200 (16) | 0.0148 (16) | 0.0199 (16) | −0.0029 (13) | 0.0035 (13) | −0.0016 (12) |
C95 | 0.0185 (15) | 0.0162 (16) | 0.0157 (15) | −0.0002 (13) | −0.0018 (12) | 0.0031 (12) |
C96 | 0.0241 (17) | 0.0114 (16) | 0.0139 (14) | −0.0019 (13) | 0.0053 (12) | −0.0021 (12) |
O91 | 0.0177 (11) | 0.0205 (12) | 0.0190 (11) | 0.0034 (9) | 0.0045 (9) | 0.0034 (9) |
C911 | 0.0241 (17) | 0.0168 (16) | 0.0142 (15) | −0.0007 (14) | 0.0008 (13) | −0.0021 (12) |
O911 | 0.0407 (14) | 0.0178 (12) | 0.0398 (14) | 0.0016 (11) | 0.0209 (12) | 0.0034 (11) |
C912 | 0.0276 (17) | 0.0188 (18) | 0.0255 (17) | 0.0052 (16) | 0.0015 (13) | 0.0004 (14) |
O93 | 0.0275 (12) | 0.0262 (13) | 0.0143 (11) | −0.0010 (10) | 0.0061 (9) | −0.0055 (9) |
C931 | 0.0170 (16) | 0.0264 (19) | 0.0203 (16) | 0.0076 (14) | 0.0039 (13) | 0.0062 (14) |
O931 | 0.0282 (13) | 0.0416 (16) | 0.0249 (13) | −0.0075 (12) | 0.0036 (10) | −0.0011 (11) |
C932 | 0.0313 (19) | 0.039 (2) | 0.0177 (17) | 0.0069 (17) | 0.0072 (14) | 0.0040 (14) |
O95 | 0.0251 (12) | 0.0194 (12) | 0.0192 (11) | 0.0044 (9) | −0.0050 (9) | −0.0028 (9) |
C951 | 0.0176 (16) | 0.0255 (18) | 0.0160 (16) | −0.0011 (14) | 0.0040 (12) | −0.0044 (14) |
O951 | 0.0297 (13) | 0.0219 (13) | 0.0205 (12) | −0.0041 (10) | 0.0012 (9) | −0.0015 (9) |
C952 | 0.0292 (19) | 0.030 (2) | 0.0210 (17) | 0.0029 (16) | −0.0061 (14) | 0.0004 (14) |
C1—C6 | 1.370 (4) | C91—C96 | 1.369 (4) |
C1—C2 | 1.399 (4) | C91—C92 | 1.397 (4) |
C1—O1 | 1.401 (3) | C91—O91 | 1.398 (3) |
C2—C3 | 1.375 (4) | C92—C93 | 1.376 (4) |
C2—H2 | 0.9300 | C92—H92 | 0.9300 |
C3—C4 | 1.378 (4) | C93—C94 | 1.386 (4) |
C3—O3 | 1.408 (4) | C93—O93 | 1.402 (3) |
C4—C5 | 1.383 (4) | C94—C95 | 1.377 (4) |
C4—H4 | 0.9300 | C94—H94 | 0.9300 |
C5—C6 | 1.390 (4) | C95—C96 | 1.386 (4) |
C5—O5 | 1.396 (3) | C95—O95 | 1.404 (3) |
C6—H6 | 0.9300 | C96—H96 | 0.9300 |
O1—C11 | 1.380 (4) | O91—C911 | 1.375 (4) |
C11—O11 | 1.191 (4) | C911—O911 | 1.195 (4) |
C11—C12 | 1.489 (4) | C911—C912 | 1.479 (4) |
C12—H12A | 0.9600 | C912—H91A | 0.9600 |
C12—H12B | 0.9600 | C912—H91B | 0.9600 |
C12—H12C | 0.9600 | C912—H91C | 0.9600 |
O3—C31 | 1.360 (4) | O93—C931 | 1.359 (4) |
C31—O31 | 1.196 (4) | C931—O931 | 1.203 (4) |
C31—C32 | 1.488 (4) | C931—C932 | 1.481 (4) |
C32—H32A | 0.9600 | C932—H93A | 0.9600 |
C32—H32B | 0.9600 | C932—H93B | 0.9600 |
C32—H32C | 0.9600 | C932—H93C | 0.9600 |
O5—C51 | 1.365 (4) | O95—C951 | 1.359 (4) |
C51—O51 | 1.197 (4) | C951—O951 | 1.197 (4) |
C51—C52 | 1.495 (4) | C951—C952 | 1.496 (4) |
C52—H52A | 0.9600 | C952—H95A | 0.9600 |
C52—H52B | 0.9600 | C952—H95B | 0.9600 |
C52—H52C | 0.9600 | C952—H95C | 0.9600 |
C6—C1—C2 | 123.1 (3) | C96—C91—C92 | 122.3 (3) |
C6—C1—O1 | 115.7 (3) | C96—C91—O91 | 116.7 (3) |
C2—C1—O1 | 121.0 (3) | C92—C91—O91 | 120.8 (3) |
C3—C2—C1 | 116.4 (3) | C93—C92—C91 | 116.9 (3) |
C3—C2—H2 | 121.8 | C93—C92—H92 | 121.5 |
C1—C2—H2 | 121.8 | C91—C92—H92 | 121.5 |
C2—C3—C4 | 123.3 (3) | C92—C93—C94 | 122.9 (3) |
C2—C3—O3 | 117.7 (3) | C92—C93—O93 | 117.6 (3) |
C4—C3—O3 | 118.8 (3) | C94—C93—O93 | 119.2 (3) |
C3—C4—C5 | 117.8 (3) | C95—C94—C93 | 117.5 (3) |
C3—C4—H4 | 121.1 | C95—C94—H94 | 121.2 |
C5—C4—H4 | 121.1 | C93—C94—H94 | 121.2 |
C4—C5—C6 | 121.9 (3) | C94—C95—C96 | 122.0 (3) |
C4—C5—O5 | 116.8 (3) | C94—C95—O95 | 117.2 (3) |
C6—C5—O5 | 121.1 (3) | C96—C95—O95 | 120.5 (3) |
C1—C6—C5 | 117.6 (3) | C91—C96—C95 | 118.2 (3) |
C1—C6—H6 | 121.2 | C91—C96—H96 | 120.9 |
C5—C6—H6 | 121.2 | C95—C96—H96 | 120.9 |
C11—O1—C1 | 118.7 (2) | C911—O91—C91 | 118.3 (2) |
O11—C11—O1 | 122.3 (3) | O911—C911—O91 | 122.3 (3) |
O11—C11—C12 | 127.7 (3) | O911—C911—C912 | 127.0 (3) |
O1—C11—C12 | 109.9 (3) | O91—C911—C912 | 110.7 (3) |
C11—C12—H12A | 109.5 | C911—C912—H91A | 109.5 |
C11—C12—H12B | 109.5 | C911—C912—H91B | 109.5 |
H12A—C12—H12B | 109.5 | H91A—C912—H91B | 109.5 |
C11—C12—H12C | 109.5 | C911—C912—H91C | 109.5 |
H12A—C12—H12C | 109.5 | H91A—C912—H91C | 109.5 |
H12B—C12—H12C | 109.5 | H91B—C912—H91C | 109.5 |
C31—O3—C3 | 118.0 (2) | C931—O93—C93 | 118.0 (2) |
O31—C31—O3 | 123.1 (3) | O931—C931—O93 | 122.5 (3) |
O31—C31—C32 | 126.0 (3) | O931—C931—C932 | 126.8 (3) |
O3—C31—C32 | 110.9 (3) | O93—C931—C932 | 110.7 (3) |
C31—C32—H32A | 109.5 | C931—C932—H93A | 109.5 |
C31—C32—H32B | 109.5 | C931—C932—H93B | 109.5 |
H32A—C32—H32B | 109.5 | H93A—C932—H93B | 109.5 |
C31—C32—H32C | 109.5 | C931—C932—H93C | 109.5 |
H32A—C32—H32C | 109.5 | H93A—C932—H93C | 109.5 |
H32B—C32—H32C | 109.5 | H93B—C932—H93C | 109.5 |
C51—O5—C5 | 119.7 (2) | C951—O95—C95 | 119.1 (2) |
O51—C51—O5 | 122.9 (3) | O951—C951—O95 | 123.4 (3) |
O51—C51—C52 | 126.8 (3) | O951—C951—C952 | 125.8 (3) |
O5—C51—C52 | 110.4 (3) | O95—C951—C952 | 110.8 (3) |
C51—C52—H52A | 109.5 | C951—C952—H95A | 109.5 |
C51—C52—H52B | 109.5 | C951—C952—H95B | 109.5 |
H52A—C52—H52B | 109.5 | H95A—C952—H95B | 109.5 |
C51—C52—H52C | 109.5 | C951—C952—H95C | 109.5 |
H52A—C52—H52C | 109.5 | H95A—C952—H95C | 109.5 |
H52B—C52—H52C | 109.5 | H95B—C952—H95C | 109.5 |
C6—C1—C2—C3 | −0.6 (5) | C96—C91—C92—C93 | 1.1 (4) |
O1—C1—C2—C3 | −174.8 (3) | O91—C91—C92—C93 | 175.6 (3) |
C1—C2—C3—C4 | −1.1 (4) | C91—C92—C93—C94 | 0.7 (4) |
C1—C2—C3—O3 | 174.2 (2) | C91—C92—C93—O93 | −173.7 (2) |
C2—C3—C4—C5 | 1.9 (5) | C92—C93—C94—C95 | −1.2 (5) |
O3—C3—C4—C5 | −173.4 (3) | O93—C93—C94—C95 | 173.1 (3) |
C3—C4—C5—C6 | −0.9 (5) | C93—C94—C95—C96 | 0.0 (5) |
C3—C4—C5—O5 | 173.9 (3) | C93—C94—C95—O95 | −174.1 (3) |
C2—C1—C6—C5 | 1.5 (5) | C92—C91—C96—C95 | −2.2 (4) |
O1—C1—C6—C5 | 175.9 (3) | O91—C91—C96—C95 | −176.9 (3) |
C4—C5—C6—C1 | −0.7 (5) | C94—C95—C96—C91 | 1.6 (5) |
O5—C5—C6—C1 | −175.3 (3) | O95—C95—C96—C91 | 175.6 (3) |
C6—C1—O1—C11 | 127.7 (3) | C96—C91—O91—C911 | −125.3 (3) |
C2—C1—O1—C11 | −57.7 (4) | C92—C91—O91—C911 | 59.9 (4) |
C1—O1—C11—O11 | −3.2 (4) | C91—O91—C911—O911 | 1.9 (4) |
C1—O1—C11—C12 | 178.0 (2) | C91—O91—C911—C912 | −178.7 (2) |
C2—C3—O3—C31 | 105.9 (3) | C92—C93—O93—C931 | −108.7 (3) |
C4—C3—O3—C31 | −78.6 (3) | C94—C93—O93—C931 | 76.7 (4) |
C3—O3—C31—O31 | 0.1 (4) | C93—O93—C931—O931 | 2.1 (4) |
C3—O3—C31—C32 | −178.5 (3) | C93—O93—C931—C932 | −179.9 (3) |
C4—C5—O5—C51 | 120.3 (3) | C94—C95—O95—C951 | −120.5 (3) |
C6—C5—O5—C51 | −64.9 (4) | C96—C95—O95—C951 | 65.3 (4) |
C5—O5—C51—O51 | 1.9 (4) | C95—O95—C951—O951 | 3.1 (4) |
C5—O5—C51—C52 | −178.6 (3) | C95—O95—C951—C952 | −176.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C52—H52A···O31i | 0.96 | 2.53 | 3.363 (4) | 145 |
C52—H52C···O11i | 0.96 | 2.31 | 3.242 (4) | 163 |
C932—H93A···O911ii | 0.96 | 2.51 | 3.292 (4) | 139 |
C952—H95C···O951iii | 0.96 | 2.54 | 3.474 (4) | 165 |
C4—H4···Cg2iv | 0.93 | 2.68 | 3.460 (3) | 141 |
C12—H12C···Cg1v | 0.96 | 2.86 | 3.604 (4) | 135 |
C912—H91B···Cg2vi | 0.96 | 2.84 | 3.658 (4) | 143 |
C94—H94···Cg1vii | 0.93 | 2.67 | 3.435 (3) | 140 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H12O6 |
Mr | 252.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 140 |
a, b, c (Å) | 6.20290 (16), 24.6643 (6), 15.3862 (4) |
β (°) | 95.297 (2) |
V (Å3) | 2343.88 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.38 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur 3/CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.931, 1.041 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40881, 4128, 2769 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.196, 1.08 |
No. of reflections | 4128 |
No. of parameters | 331 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.26 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2008), CrysAlis PRO RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C52—H52A···O31i | 0.96 | 2.53 | 3.363 (4) | 145 |
C52—H52C···O11i | 0.96 | 2.31 | 3.242 (4) | 163 |
C932—H93A···O911ii | 0.96 | 2.51 | 3.292 (4) | 139 |
C952—H95C···O951iii | 0.96 | 2.54 | 3.474 (4) | 165 |
C4—H4···Cg2iv | 0.93 | 2.68 | 3.460 (3) | 141 |
C12—H12C···Cg1v | 0.96 | 2.86 | 3.604 (4) | 135 |
C912—H91B···Cg2vi | 0.96 | 2.84 | 3.658 (4) | 143 |
C94—H94···Cg1vii | 0.93 | 2.67 | 3.435 (3) | 140 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x+1/2, y+1/2, −z+1/2. |
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Haines, A. H. & Hughes, D. L. (2007). Carbohydr. Res. 342, 2264–2269. Web of Science CSD CrossRef PubMed CAS Google Scholar
Haines, A. H. & Hughes, D. L. (2009). Acta Cryst. E65, o3280. CrossRef IUCr Journals Google Scholar
Haines, A. H., Steytler, D. C. & Rivett, C. (2008). J. Supercrit. Fluids, 44, 21–24. Web of Science CrossRef CAS Google Scholar
Haines, A. H., Steytler, D. C. & Rivett, C. (2009). Unpublished data. Google Scholar
Oxford Diffraction (2008). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structural factors which enhance the solubility of organic compounds in liquid carbon dioxide are difficult to identify, but a knowledge of these is important in view of the possibility of using liquid carbon dioxide as an environmentally acceptable, cheap, safe and readily available alternative to replace organic-based solvents in the development of so-called "green chemistry". Previous studies (Haines et al., 2008) have shown that certain types of acyl group promote the solubilities of per-acylated D-glucopyranose derivatives in liquid carbon dioxide; in particular trimethylacetyl groups promoted solubility, their effect being comparable to acetyl groups and superior to dimethylacetyl groups. In searching for an explanation for solubility differences in this series based on differing intermolecular forces in the solid state, we conducted crystal structure studies on the compounds (Haines & Hughes, 2007), but the results indicated no substantial difference in such intermolecular forces.
Measurement of solubilities in liquid carbon dioxide of the series of 1,3,5-triacetoxybenzene (1) and substituted derivatives, viz 1,3,5-tris-(dimethylacetoxy)benzene (2) and 1,3,5-tris-(trimethylacetoxy)benzene (3), chosen in an attempt to separate the effects on solubility of the number and structure of peripheral substituents in compounds of similar overall molecular dimensions to the carbohydrate derivatives, showed no major differences (Haines, et al., 2009, unpublished results) and prompted an investigation of their crystal structures in order to compare intermolecular interactions in these compounds.
The stucture of the first compound of the series, (1) is shown in Figure 1; other compounds of the series are described in the accompanying paper (Haines and Hughes, 2009). Dimensions are available in the archived CIFs.
Compound (1) was prepared by the acylation of 1,3,5-trihydroxybenzene with acetic anhydride and formed crystals having two essentially identical molecules with very similar orientations in the cell, related by a pseudo inversion centre. The three acetoxy groups in each molecule are essentially planar and are tilted, in a regular propeller-style arrangement, with their normals at 56.72 (12), 76.35 (9) and 60.73 (12)° from the normal to the mean-plane of the central C6 ring in one molecule and 58.44 (11), 75.11 (13) and 63.76 (11) ° in the second molecule. In each molecule the three carbonyl O-atoms are on the same side of the C6 ring, with the Cring—O—C—Me bonds in a trans conformation. The principal intermolecular contacts appear to be C—H···π-ring interactions: each C6 ring has such a contact to both faces of the ring – the ring C(1–6) has H(12Ca) and H(94b) on opposite sides of the ring at 3.25 and 2.63 Å from the ring mean-plane, and the ring of C(91–96) is bounded by H(4c) and H(91Bd) at 2.65 and 3.14 Å from the ring mean-plane (the superscripts a–d indicate symmetry operations). Also, each molecule makes two intermolecular C—H···O contacts with H···O distances in the range 2.31–2.54 Å.