organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-triyl tri­acetate

aSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: d.l.hughes@uea.ac.uk

(Received 23 October 2009; accepted 20 November 2009; online 28 November 2009)

The asymmetric unit of the title compound, C12H12O6, contains two essentially identical mol­ecules related by a pseudo-inversion centre. The three acet­oxy groups in each mol­ecule are essentially planar and are tilted, in a regular propeller-style arrangement, with their normals oriented between 56.72 (12) and 76.35 (9)° from the normal to the mean plane of the central C6 ring; in each mol­ecule the three carbonyl O atoms are on the same side of the C6 ring, with the Cring—O—C—Me bonds in a trans conformation. The principal inter­molecular contacts appear to be C—H⋯π-ring inter­actions; each C6 ring has such a contact to both faces of the ring; in addition, each mol­ecule has two inter­molecular C—H⋯O contacts with H⋯O distances less than 2.55 Å.

Related literature

For our previous studies in this area, see: Haines & Hughes (2007[Haines, A. H. & Hughes, D. L. (2007). Carbohydr. Res. 342, 2264-2269.]); Haines et al. (2008[Haines, A. H., Steytler, D. C. & Rivett, C. (2008). J. Supercrit. Fluids, 44, 21-24.], 2009[Haines, A. H., Steytler, D. C. & Rivett, C. (2009). Unpublished data.]). For a related structure, see: Haines & Hughes (2009[Haines, A. H. & Hughes, D. L. (2009). Acta Cryst. E65, o3280.]).

[Scheme 1]
/p>

Experimental

Crystal data
  • C12H12O6

  • Mr = 252.22

  • Monoclinic, P 21 /n

  • a = 6.20290 (16) Å

  • b = 24.6643 (6) Å

  • c = 15.3862 (4) Å

  • β = 95.297 (2)°

  • V = 2343.88 (11) Å3

  • Z = 8

  • Mo- Kα radiation

  • μ = 0.12 mm−1

  • T = 140 K

  • 0.38 × 0.18 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur 3/CCD diffractometer

  • Absorption correction: multi-scan (CrysAlisPro RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.931, Tmax = 1.041

  • 40881 measured reflections

  • 4128 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.196

  • S = 1.08

  • 4128 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C52—H52A⋯O31i 0.96 2.53 3.363 (4) 145
C52—H52C⋯O11i 0.96 2.31 3.242 (4) 163
C932—H93A⋯O911ii 0.96 2.51 3.292 (4) 139
C952—H95C⋯O951iii 0.96 2.54 3.474 (4) 165
C4—H4⋯Cg2iv 0.93 2.68 3.460 (3) 141
C12—H12CCg1v 0.96 2.86 3.604 (4) 135
C912—H91BCg2vi 0.96 2.84 3.658 (4) 143
C94—H94⋯Cg1vii 0.93 2.67 3.435 (3) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) x+1, y, z; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C91–C96 rings, respectively.

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlisPro RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Structural factors which enhance the solubility of organic compounds in liquid carbon dioxide are difficult to identify, but a knowledge of these is important in view of the possibility of using liquid carbon dioxide as an environmentally acceptable, cheap, safe and readily available alternative to replace organic-based solvents in the development of so-called "green chemistry". Previous studies (Haines et al., 2008) have shown that certain types of acyl group promote the solubilities of per-acylated D-glucopyranose derivatives in liquid carbon dioxide; in particular trimethylacetyl groups promoted solubility, their effect being comparable to acetyl groups and superior to dimethylacetyl groups. In searching for an explanation for solubility differences in this series based on differing intermolecular forces in the solid state, we conducted crystal structure studies on the compounds (Haines & Hughes, 2007), but the results indicated no substantial difference in such intermolecular forces.

Measurement of solubilities in liquid carbon dioxide of the series of 1,3,5-triacetoxybenzene (1) and substituted derivatives, viz 1,3,5-tris-(dimethylacetoxy)benzene (2) and 1,3,5-tris-(trimethylacetoxy)benzene (3), chosen in an attempt to separate the effects on solubility of the number and structure of peripheral substituents in compounds of similar overall molecular dimensions to the carbohydrate derivatives, showed no major differences (Haines, et al., 2009, unpublished results) and prompted an investigation of their crystal structures in order to compare intermolecular interactions in these compounds.

The stucture of the first compound of the series, (1) is shown in Figure 1; other compounds of the series are described in the accompanying paper (Haines and Hughes, 2009). Dimensions are available in the archived CIFs.

Compound (1) was prepared by the acylation of 1,3,5-trihydroxybenzene with acetic anhydride and formed crystals having two essentially identical molecules with very similar orientations in the cell, related by a pseudo inversion centre. The three acetoxy groups in each molecule are essentially planar and are tilted, in a regular propeller-style arrangement, with their normals at 56.72 (12), 76.35 (9) and 60.73 (12)° from the normal to the mean-plane of the central C6 ring in one molecule and 58.44 (11), 75.11 (13) and 63.76 (11) ° in the second molecule. In each molecule the three carbonyl O-atoms are on the same side of the C6 ring, with the Cring—O—C—Me bonds in a trans conformation. The principal intermolecular contacts appear to be C—H···π-ring interactions: each C6 ring has such a contact to both faces of the ring – the ring C(1–6) has H(12Ca) and H(94b) on opposite sides of the ring at 3.25 and 2.63 Å from the ring mean-plane, and the ring of C(91–96) is bounded by H(4c) and H(91Bd) at 2.65 and 3.14 Å from the ring mean-plane (the superscripts ad indicate symmetry operations). Also, each molecule makes two intermolecular C—H···O contacts with H···O distances in the range 2.31–2.54 Å.

Related literature top

For our previous studies in this area, see: Haines & Hughes (2007); Haines et al. (2008, 2009). For further synthetic details, see: Hegetschweiler et al. (1990). For a related structure, see: Haines & Hughes (2009).

Experimental top

The title compound was prepared by the conventional acylation of the parent 1,3,5-trihydroxybenzene and has been described previously (Hegetschweiler et al., 1990); the physical data (m.p., 1H and 13C NMR spectra) of our product agreed with those reported.

To a solution of anhydrous 1,3,5-trihydroxybenzene (phloroglucinol) (1.26 g) in pyridine (6 ml) was added acetic anhydride (5.6 ml) and after 12 h the solution was poured into iced water which led to formation of a white precipitate. After stirring for 2 h, the solid was collected by filtration, and recrystallized from ethanol to give compound 1 (1.67 g, 66%), m.p. 106–107 °C (lit. {Hegetschweiler et al., 1990} 106 °C); δH(CDCl3) 6.84, (s, 3H), 2.27 (s, 9H); δC(CDCl3) 168.65, 151.19, 112.76, 20.91. The NMR data are in full agreement with the reported literature values (Hegetschweiler et al., 1990).

Refinement top

Hydrogen atoms were included in idealized positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO RED (Oxford Diffraction, 2008); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two independent molecules in (I), related by a pseudo-inversion centre at ca 0, 1/4, 1/2. Displacement ellipsoids are drawn at the 50% probability level.
Benzene-1,3,5-triyl triacetate top
Crystal data top
C12H12O6Z = 8
Mr = 252.22F(000) = 1056
Monoclinic, P21/nDx = 1.429 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.20290 (16) ŵ = 0.12 mm1
b = 24.6643 (6) ÅT = 140 K
c = 15.3862 (4) ÅPrism, colourless
β = 95.297 (2)°0.38 × 0.18 × 0.17 mm
V = 2343.88 (11) Å3
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
4128 independent reflections
Radiation source: Enhance (Mo) X-ray Source2769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.0050 pixels mm-1θmax = 25.0°, θmin = 3.1°
Thin–slice ϕ and ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2008)
k = 2929
Tmin = 0.931, Tmax = 1.041l = 1818
40881 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1157P)2 + 0.643P]
where P = (Fo2 + 2Fc2)/3
4128 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H12O6V = 2343.88 (11) Å3
Mr = 252.22Z = 8
Monoclinic, P21/nMo Kα radiation
a = 6.20290 (16) ŵ = 0.12 mm1
b = 24.6643 (6) ÅT = 140 K
c = 15.3862 (4) Å0.38 × 0.18 × 0.17 mm
β = 95.297 (2)°
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
4128 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2008)
2769 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 1.041Rint = 0.054
40881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 1.08Δρmax = 0.65 e Å3
4128 reflectionsΔρmin = 0.26 e Å3
331 parameters
Special details top

Experimental. CrysAlisPro RED, Oxford Diffraction Ltd., Version 1.171.32.24 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1644 (5)0.22484 (12)0.2555 (2)0.0171 (7)
C20.2182 (5)0.21091 (12)0.17203 (19)0.0171 (7)
H20.12960.22000.12210.020*
C30.4090 (5)0.18306 (12)0.16789 (19)0.0188 (7)
C40.5456 (5)0.16979 (12)0.24048 (19)0.0177 (7)
H40.67560.15180.23530.021*
C50.4830 (5)0.18408 (13)0.32137 (19)0.0191 (7)
C60.2907 (5)0.21159 (12)0.33028 (19)0.0176 (7)
H60.24930.22070.38500.021*
O10.0344 (3)0.24931 (9)0.26764 (13)0.0208 (5)
C110.0865 (5)0.29755 (13)0.2254 (2)0.0216 (7)
O110.0352 (4)0.32021 (9)0.18212 (16)0.0330 (6)
C120.3065 (5)0.31541 (14)0.2446 (2)0.0255 (8)
H12A0.32710.35270.22810.038*
H12B0.32060.31150.30590.038*
H12C0.41370.29350.21220.038*
O30.4578 (3)0.16404 (8)0.08570 (13)0.0210 (5)
C310.6135 (5)0.19045 (13)0.0455 (2)0.0211 (7)
O310.7100 (4)0.22877 (10)0.07680 (15)0.0301 (6)
C320.6401 (5)0.16603 (14)0.04125 (19)0.0255 (8)
H32A0.51920.17590.08160.038*
H32B0.64690.12730.03590.038*
H32C0.77140.17920.06220.038*
O50.6130 (3)0.16564 (9)0.39428 (13)0.0233 (5)
C510.7090 (5)0.20210 (14)0.4523 (2)0.0222 (7)
O510.6831 (4)0.25004 (10)0.44501 (15)0.0325 (6)
C520.8440 (5)0.17336 (15)0.5235 (2)0.0265 (8)
H52A0.98720.18850.52920.040*
H52B0.85180.13550.50960.040*
H52C0.77970.17760.57750.040*
C910.8316 (5)0.52607 (12)0.23650 (19)0.0169 (7)
C920.7795 (5)0.53882 (12)0.32051 (19)0.0155 (7)
H920.86990.52930.36970.019*
C930.5880 (5)0.56608 (12)0.32707 (19)0.0177 (7)
C940.4486 (5)0.58031 (12)0.25507 (19)0.0181 (7)
H940.31880.59810.26140.022*
C950.5094 (5)0.56707 (12)0.17385 (18)0.0170 (7)
C960.7021 (5)0.54049 (11)0.16326 (19)0.0162 (7)
H960.74230.53270.10790.019*
O911.0296 (3)0.50177 (9)0.22335 (13)0.0189 (5)
C9111.0768 (5)0.45224 (13)0.26152 (19)0.0184 (7)
O9110.9526 (4)0.42894 (9)0.30330 (16)0.0317 (6)
C9121.2938 (6)0.43354 (14)0.2422 (2)0.0240 (7)
H91A1.31710.39720.26350.036*
H91B1.40210.45710.27030.036*
H91C1.30300.43420.18030.036*
O930.5437 (3)0.58395 (9)0.41005 (13)0.0224 (5)
C9310.3854 (5)0.55818 (14)0.4494 (2)0.0211 (7)
O9310.2877 (4)0.52004 (11)0.41682 (15)0.0315 (6)
C9320.3602 (6)0.58228 (15)0.5361 (2)0.0290 (9)
H93A0.23550.56690.55940.043*
H93B0.34200.62080.53020.043*
H93C0.48700.57470.57490.043*
O950.3780 (3)0.58607 (9)0.10101 (13)0.0217 (5)
C9510.2842 (5)0.54966 (13)0.04289 (19)0.0196 (7)
O9510.3003 (3)0.50160 (9)0.05213 (13)0.0241 (5)
C9520.1636 (5)0.57803 (15)0.0327 (2)0.0273 (8)
H95A0.24780.57710.08190.041*
H95B0.13800.61500.01710.041*
H95C0.02770.56010.04740.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (16)0.0130 (15)0.0220 (16)0.0003 (13)0.0030 (12)0.0001 (12)
C20.0153 (16)0.0180 (17)0.0176 (15)0.0033 (14)0.0001 (12)0.0030 (13)
C30.0249 (17)0.0158 (16)0.0158 (15)0.0062 (14)0.0019 (13)0.0008 (12)
C40.0195 (16)0.0127 (16)0.0208 (16)0.0002 (13)0.0012 (13)0.0017 (12)
C50.0215 (16)0.0151 (16)0.0195 (16)0.0029 (13)0.0047 (13)0.0001 (12)
C60.0208 (17)0.0176 (17)0.0150 (15)0.0015 (14)0.0051 (12)0.0013 (13)
O10.0186 (11)0.0217 (12)0.0225 (12)0.0032 (9)0.0034 (9)0.0036 (9)
C110.0286 (18)0.0173 (17)0.0186 (16)0.0003 (14)0.0005 (14)0.0033 (13)
O110.0367 (14)0.0195 (13)0.0459 (15)0.0016 (11)0.0193 (12)0.0053 (11)
C120.0261 (17)0.0234 (19)0.0261 (18)0.0035 (17)0.0022 (14)0.0001 (14)
O30.0263 (12)0.0209 (12)0.0159 (11)0.0037 (10)0.0025 (9)0.0021 (9)
C310.0166 (16)0.0240 (18)0.0227 (17)0.0027 (14)0.0020 (13)0.0025 (14)
O310.0279 (13)0.0334 (14)0.0294 (13)0.0088 (11)0.0052 (10)0.0059 (11)
C320.0285 (18)0.033 (2)0.0159 (16)0.0031 (15)0.0049 (14)0.0009 (14)
O50.0276 (12)0.0208 (12)0.0203 (11)0.0033 (10)0.0051 (9)0.0036 (9)
C510.0174 (16)0.0282 (19)0.0214 (17)0.0000 (14)0.0050 (13)0.0055 (14)
O510.0434 (15)0.0262 (14)0.0262 (13)0.0040 (12)0.0056 (11)0.0018 (11)
C520.0247 (18)0.036 (2)0.0184 (16)0.0039 (16)0.0025 (14)0.0049 (14)
C910.0150 (16)0.0148 (15)0.0210 (16)0.0036 (13)0.0019 (13)0.0006 (12)
C920.0179 (16)0.0137 (16)0.0144 (15)0.0037 (13)0.0010 (12)0.0004 (12)
C930.0224 (16)0.0153 (16)0.0158 (15)0.0030 (13)0.0031 (12)0.0027 (12)
C940.0200 (16)0.0148 (16)0.0199 (16)0.0029 (13)0.0035 (13)0.0016 (12)
C950.0185 (15)0.0162 (16)0.0157 (15)0.0002 (13)0.0018 (12)0.0031 (12)
C960.0241 (17)0.0114 (16)0.0139 (14)0.0019 (13)0.0053 (12)0.0021 (12)
O910.0177 (11)0.0205 (12)0.0190 (11)0.0034 (9)0.0045 (9)0.0034 (9)
C9110.0241 (17)0.0168 (16)0.0142 (15)0.0007 (14)0.0008 (13)0.0021 (12)
O9110.0407 (14)0.0178 (12)0.0398 (14)0.0016 (11)0.0209 (12)0.0034 (11)
C9120.0276 (17)0.0188 (18)0.0255 (17)0.0052 (16)0.0015 (13)0.0004 (14)
O930.0275 (12)0.0262 (13)0.0143 (11)0.0010 (10)0.0061 (9)0.0055 (9)
C9310.0170 (16)0.0264 (19)0.0203 (16)0.0076 (14)0.0039 (13)0.0062 (14)
O9310.0282 (13)0.0416 (16)0.0249 (13)0.0075 (12)0.0036 (10)0.0011 (11)
C9320.0313 (19)0.039 (2)0.0177 (17)0.0069 (17)0.0072 (14)0.0040 (14)
O950.0251 (12)0.0194 (12)0.0192 (11)0.0044 (9)0.0050 (9)0.0028 (9)
C9510.0176 (16)0.0255 (18)0.0160 (16)0.0011 (14)0.0040 (12)0.0044 (14)
O9510.0297 (13)0.0219 (13)0.0205 (12)0.0041 (10)0.0012 (9)0.0015 (9)
C9520.0292 (19)0.030 (2)0.0210 (17)0.0029 (16)0.0061 (14)0.0004 (14)
Geometric parameters (Å, º) top
C1—C61.370 (4)C91—C961.369 (4)
C1—C21.399 (4)C91—C921.397 (4)
C1—O11.401 (3)C91—O911.398 (3)
C2—C31.375 (4)C92—C931.376 (4)
C2—H20.9300C92—H920.9300
C3—C41.378 (4)C93—C941.386 (4)
C3—O31.408 (4)C93—O931.402 (3)
C4—C51.383 (4)C94—C951.377 (4)
C4—H40.9300C94—H940.9300
C5—C61.390 (4)C95—C961.386 (4)
C5—O51.396 (3)C95—O951.404 (3)
C6—H60.9300C96—H960.9300
O1—C111.380 (4)O91—C9111.375 (4)
C11—O111.191 (4)C911—O9111.195 (4)
C11—C121.489 (4)C911—C9121.479 (4)
C12—H12A0.9600C912—H91A0.9600
C12—H12B0.9600C912—H91B0.9600
C12—H12C0.9600C912—H91C0.9600
O3—C311.360 (4)O93—C9311.359 (4)
C31—O311.196 (4)C931—O9311.203 (4)
C31—C321.488 (4)C931—C9321.481 (4)
C32—H32A0.9600C932—H93A0.9600
C32—H32B0.9600C932—H93B0.9600
C32—H32C0.9600C932—H93C0.9600
O5—C511.365 (4)O95—C9511.359 (4)
C51—O511.197 (4)C951—O9511.197 (4)
C51—C521.495 (4)C951—C9521.496 (4)
C52—H52A0.9600C952—H95A0.9600
C52—H52B0.9600C952—H95B0.9600
C52—H52C0.9600C952—H95C0.9600
C6—C1—C2123.1 (3)C96—C91—C92122.3 (3)
C6—C1—O1115.7 (3)C96—C91—O91116.7 (3)
C2—C1—O1121.0 (3)C92—C91—O91120.8 (3)
C3—C2—C1116.4 (3)C93—C92—C91116.9 (3)
C3—C2—H2121.8C93—C92—H92121.5
C1—C2—H2121.8C91—C92—H92121.5
C2—C3—C4123.3 (3)C92—C93—C94122.9 (3)
C2—C3—O3117.7 (3)C92—C93—O93117.6 (3)
C4—C3—O3118.8 (3)C94—C93—O93119.2 (3)
C3—C4—C5117.8 (3)C95—C94—C93117.5 (3)
C3—C4—H4121.1C95—C94—H94121.2
C5—C4—H4121.1C93—C94—H94121.2
C4—C5—C6121.9 (3)C94—C95—C96122.0 (3)
C4—C5—O5116.8 (3)C94—C95—O95117.2 (3)
C6—C5—O5121.1 (3)C96—C95—O95120.5 (3)
C1—C6—C5117.6 (3)C91—C96—C95118.2 (3)
C1—C6—H6121.2C91—C96—H96120.9
C5—C6—H6121.2C95—C96—H96120.9
C11—O1—C1118.7 (2)C911—O91—C91118.3 (2)
O11—C11—O1122.3 (3)O911—C911—O91122.3 (3)
O11—C11—C12127.7 (3)O911—C911—C912127.0 (3)
O1—C11—C12109.9 (3)O91—C911—C912110.7 (3)
C11—C12—H12A109.5C911—C912—H91A109.5
C11—C12—H12B109.5C911—C912—H91B109.5
H12A—C12—H12B109.5H91A—C912—H91B109.5
C11—C12—H12C109.5C911—C912—H91C109.5
H12A—C12—H12C109.5H91A—C912—H91C109.5
H12B—C12—H12C109.5H91B—C912—H91C109.5
C31—O3—C3118.0 (2)C931—O93—C93118.0 (2)
O31—C31—O3123.1 (3)O931—C931—O93122.5 (3)
O31—C31—C32126.0 (3)O931—C931—C932126.8 (3)
O3—C31—C32110.9 (3)O93—C931—C932110.7 (3)
C31—C32—H32A109.5C931—C932—H93A109.5
C31—C32—H32B109.5C931—C932—H93B109.5
H32A—C32—H32B109.5H93A—C932—H93B109.5
C31—C32—H32C109.5C931—C932—H93C109.5
H32A—C32—H32C109.5H93A—C932—H93C109.5
H32B—C32—H32C109.5H93B—C932—H93C109.5
C51—O5—C5119.7 (2)C951—O95—C95119.1 (2)
O51—C51—O5122.9 (3)O951—C951—O95123.4 (3)
O51—C51—C52126.8 (3)O951—C951—C952125.8 (3)
O5—C51—C52110.4 (3)O95—C951—C952110.8 (3)
C51—C52—H52A109.5C951—C952—H95A109.5
C51—C52—H52B109.5C951—C952—H95B109.5
H52A—C52—H52B109.5H95A—C952—H95B109.5
C51—C52—H52C109.5C951—C952—H95C109.5
H52A—C52—H52C109.5H95A—C952—H95C109.5
H52B—C52—H52C109.5H95B—C952—H95C109.5
C6—C1—C2—C30.6 (5)C96—C91—C92—C931.1 (4)
O1—C1—C2—C3174.8 (3)O91—C91—C92—C93175.6 (3)
C1—C2—C3—C41.1 (4)C91—C92—C93—C940.7 (4)
C1—C2—C3—O3174.2 (2)C91—C92—C93—O93173.7 (2)
C2—C3—C4—C51.9 (5)C92—C93—C94—C951.2 (5)
O3—C3—C4—C5173.4 (3)O93—C93—C94—C95173.1 (3)
C3—C4—C5—C60.9 (5)C93—C94—C95—C960.0 (5)
C3—C4—C5—O5173.9 (3)C93—C94—C95—O95174.1 (3)
C2—C1—C6—C51.5 (5)C92—C91—C96—C952.2 (4)
O1—C1—C6—C5175.9 (3)O91—C91—C96—C95176.9 (3)
C4—C5—C6—C10.7 (5)C94—C95—C96—C911.6 (5)
O5—C5—C6—C1175.3 (3)O95—C95—C96—C91175.6 (3)
C6—C1—O1—C11127.7 (3)C96—C91—O91—C911125.3 (3)
C2—C1—O1—C1157.7 (4)C92—C91—O91—C91159.9 (4)
C1—O1—C11—O113.2 (4)C91—O91—C911—O9111.9 (4)
C1—O1—C11—C12178.0 (2)C91—O91—C911—C912178.7 (2)
C2—C3—O3—C31105.9 (3)C92—C93—O93—C931108.7 (3)
C4—C3—O3—C3178.6 (3)C94—C93—O93—C93176.7 (4)
C3—O3—C31—O310.1 (4)C93—O93—C931—O9312.1 (4)
C3—O3—C31—C32178.5 (3)C93—O93—C931—C932179.9 (3)
C4—C5—O5—C51120.3 (3)C94—C95—O95—C951120.5 (3)
C6—C5—O5—C5164.9 (4)C96—C95—O95—C95165.3 (4)
C5—O5—C51—O511.9 (4)C95—O95—C951—O9513.1 (4)
C5—O5—C51—C52178.6 (3)C95—O95—C951—C952176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52A···O31i0.962.533.363 (4)145
C52—H52C···O11i0.962.313.242 (4)163
C932—H93A···O911ii0.962.513.292 (4)139
C952—H95C···O951iii0.962.543.474 (4)165
C4—H4···Cg2iv0.932.683.460 (3)141
C12—H12C···Cg1v0.962.863.604 (4)135
C912—H91B···Cg2vi0.962.843.658 (4)143
C94—H94···Cg1vii0.932.673.435 (3)140
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+3/2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12O6
Mr252.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)140
a, b, c (Å)6.20290 (16), 24.6643 (6), 15.3862 (4)
β (°) 95.297 (2)
V3)2343.88 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.18 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur 3/CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2008)
Tmin, Tmax0.931, 1.041
No. of measured, independent and
observed [I > 2σ(I)] reflections
40881, 4128, 2769
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.196, 1.08
No. of reflections4128
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.26

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2008), CrysAlis PRO RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52A···O31i0.962.533.363 (4)145
C52—H52C···O11i0.962.313.242 (4)163
C932—H93A···O911ii0.962.513.292 (4)139
C952—H95C···O951iii0.962.543.474 (4)165
C4—H4···Cg2iv0.932.683.460 (3)141
C12—H12C···Cg1v0.962.863.604 (4)135
C912—H91B···Cg2vi0.962.843.658 (4)143
C94—H94···Cg1vii0.932.673.435 (3)140
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+3/2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2007). Carbohydr. Res. 342, 2264–2269.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2009). Acta Cryst. E65, o3280.  CrossRef IUCr Journals Google Scholar
First citationHaines, A. H., Steytler, D. C. & Rivett, C. (2008). J. Supercrit. Fluids, 44, 21–24.  Web of Science CrossRef CAS Google Scholar
First citationHaines, A. H., Steytler, D. C. & Rivett, C. (2009). Unpublished data.  Google Scholar
First citationOxford Diffraction (2008). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds