organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(1,3,5,7-Tetra­oxo-2,3,6,7-tetra­hydro-1H,5H-pyrrolo[3,4-f]iso­indole-2,6-di­yl)di­propanoic acid N,N-di­methyl­formamide disolvate

aInstitute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: ysywu@126.com

(Received 24 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, C16H12N2O8·2C3H7NO, the complete tricyclic compound is generated by a crystallographic centre of symmetry. In the crystal, the tricycle is linked to two adjacent N,N-dimethyl­formamide solvent mol­ecules by O—H⋯O hydrogen bonds.

Related literature

For a related structure and background, see: Wang & Wei (2005[Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O8·2C3H7NO

  • Mr = 506.47

  • Monoclinic, P 21 /c

  • a = 12.542 (8) Å

  • b = 8.611 (6) Å

  • c = 12.902 (9) Å

  • β = 118.774 (8)°

  • V = 1221.3 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.33 × 0.31 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 12363 measured reflections

  • 2386 independent reflections

  • 1745 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.06

  • 2386 reflections

  • 167 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.78 2.583 (3) 166
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Related literature top

For a related structure and background, see: Wang & Wei (2005).

Experimental top

3-Bromopropanoic acid (2 mmol, 0.306 g) and pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone (1 mmol, 0.360 g) were dissolved in 20 ml of the mixed solvent of N,N-dimethylformamide and water in a ratio of 1:2 (v/v). The mixture was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 353 K for three days. After cooling the autoclave to room temperature, colourless slabs of (I) were obtained.

Refinement top

H9A aom was located by Fourier map, other H atoms were geometrically placed with C—H = 0.93–0.97 Å and O—H = 0.82 Å, and were refined as riding with Uiso(H)=1.2Ueq(Cmethylene and C in phenyl ring) and Uiso(H)=1.5Ueq(O and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
3,3'-(1,3,5,7-Tetraoxo-2,3,6,7-tetrahydro-1H,5H- pyrrolo[3,4-f]isoindole-2,6-diyl)dipropanoic acid N,N-dimethylformamide solvate top
Crystal data top
C16H12N2O8·2C3H7NOF(000) = 532
Mr = 506.47Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2660 reflections
a = 12.542 (8) Åθ = 3.0–23.7°
b = 8.611 (6) ŵ = 0.11 mm1
c = 12.902 (9) ÅT = 296 K
β = 118.774 (8)°Slab, colourless
V = 1221.3 (14) Å30.33 × 0.31 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1745 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω scansh = 1515
12363 measured reflectionsk = 1010
2386 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.5597P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.44 e Å3
15 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H12N2O8·2C3H7NOV = 1221.3 (14) Å3
Mr = 506.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.542 (8) ŵ = 0.11 mm1
b = 8.611 (6) ÅT = 296 K
c = 12.902 (9) Å0.33 × 0.31 × 0.10 mm
β = 118.774 (8)°
Data collection top
Bruker SMART CCD
diffractometer
1745 reflections with I > 2σ(I)
12363 measured reflectionsRint = 0.037
2386 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04715 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
2386 reflectionsΔρmin = 0.30 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2286 (2)0.3041 (3)0.14930 (17)0.0847 (7)
O20.3228 (2)0.5093 (3)0.16182 (17)0.0896 (8)
H20.28610.48760.23240.134*
O30.22033 (16)0.5402 (2)0.20189 (14)0.0502 (5)
O40.55406 (18)0.2430 (2)0.29251 (15)0.0579 (5)
O50.2066 (2)1.0088 (2)1.11020 (15)0.0651 (6)
C10.2949 (2)0.4100 (3)0.1032 (2)0.0487 (6)
C20.3578 (3)0.4407 (4)0.0263 (2)0.0575 (7)
H2B0.34070.54650.03950.069*
H2C0.44490.43210.05640.069*
C30.3212 (3)0.3327 (3)0.09466 (19)0.0479 (6)
H3A0.23320.33200.05970.057*
H3B0.34750.22810.09030.057*
C40.3193 (2)0.4830 (3)0.26018 (19)0.0388 (5)
C50.4876 (2)0.3319 (3)0.30588 (19)0.0403 (5)
C60.5071 (2)0.4122 (3)0.41634 (19)0.0366 (5)
C70.6041 (2)0.4039 (3)0.5291 (2)0.0396 (5)
H7A0.67140.34120.54820.048*
C80.5939 (2)0.4955 (3)0.61186 (18)0.0368 (5)
C90.1607 (3)0.8835 (4)1.0674 (2)0.0522 (7)
H9A0.170 (3)0.794 (4)1.119 (3)0.066 (8)*
C100.0679 (3)0.9775 (4)0.8676 (3)0.0717 (9)
H10A0.10901.07100.90710.108*
H10B0.01820.99580.82540.108*
H10C0.09550.94620.81310.108*
C110.0398 (4)0.7052 (5)0.9101 (4)0.1117 (16)
H11A0.06430.63470.97530.168*
H11B0.06630.66620.85660.168*
H11C0.04720.71480.86950.168*
N10.37472 (18)0.3802 (2)0.21817 (16)0.0416 (5)
N20.0942 (2)0.8560 (3)0.95392 (19)0.0558 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1149 (18)0.0799 (15)0.0394 (10)0.0332 (14)0.0212 (11)0.0087 (10)
O20.1066 (17)0.1158 (18)0.0353 (10)0.0460 (15)0.0254 (11)0.0011 (11)
O30.0456 (10)0.0599 (11)0.0371 (9)0.0041 (9)0.0135 (8)0.0081 (8)
O40.0728 (13)0.0580 (11)0.0467 (10)0.0166 (10)0.0319 (10)0.0008 (8)
O50.0889 (15)0.0617 (12)0.0383 (10)0.0119 (11)0.0253 (10)0.0033 (9)
C10.0564 (14)0.0563 (14)0.0308 (11)0.0061 (12)0.0190 (11)0.0015 (10)
C20.0695 (18)0.0686 (18)0.0319 (13)0.0228 (15)0.0224 (13)0.0066 (12)
C30.0612 (16)0.0484 (14)0.0290 (12)0.0080 (12)0.0178 (11)0.0050 (10)
C40.0435 (14)0.0410 (13)0.0314 (11)0.0031 (11)0.0176 (11)0.0046 (10)
C50.0514 (14)0.0383 (12)0.0341 (12)0.0009 (11)0.0228 (11)0.0013 (9)
C60.0452 (13)0.0361 (12)0.0317 (11)0.0017 (10)0.0211 (10)0.0030 (9)
C70.0409 (13)0.0434 (13)0.0352 (12)0.0071 (10)0.0188 (10)0.0046 (10)
C80.0417 (13)0.0408 (12)0.0287 (11)0.0005 (10)0.0176 (10)0.0044 (9)
C90.0573 (17)0.0564 (17)0.0404 (14)0.0010 (13)0.0215 (13)0.0058 (13)
C100.0654 (19)0.104 (3)0.0398 (15)0.0021 (18)0.0207 (14)0.0130 (15)
C110.110 (3)0.078 (3)0.088 (3)0.016 (2)0.001 (2)0.017 (2)
N10.0513 (12)0.0442 (11)0.0278 (9)0.0014 (9)0.0180 (9)0.0002 (8)
N20.0534 (13)0.0621 (14)0.0408 (12)0.0010 (11)0.0139 (10)0.0024 (10)
Geometric parameters (Å, º) top
O1—C11.184 (3)C6—C71.378 (3)
O2—C11.296 (3)C6—C8i1.387 (3)
O2—H20.8200C7—C81.382 (3)
O3—C41.204 (3)C7—H7A0.9300
O4—C51.203 (3)C8—C6i1.387 (3)
O5—C91.222 (3)C8—C4i1.488 (3)
C1—C21.488 (3)C9—N21.311 (3)
C2—C31.498 (4)C9—H9A0.99 (3)
C2—H2B0.9700C10—N21.445 (4)
C2—H2C0.9700C10—H10A0.9600
C3—N11.458 (3)C10—H10B0.9600
C3—H3A0.9700C10—H10C0.9600
C3—H3B0.9700C11—N21.449 (4)
C4—N11.387 (3)C11—H11A0.9600
C4—C8i1.488 (3)C11—H11B0.9600
C5—N11.384 (3)C11—H11C0.9600
C5—C61.495 (3)
C1—O2—H2109.5C6—C7—H7A122.5
O1—C1—O2122.5 (2)C8—C7—H7A122.5
O1—C1—C2124.4 (2)C7—C8—C6i122.4 (2)
O2—C1—C2113.1 (2)C7—C8—C4i129.6 (2)
C1—C2—C3113.8 (2)C6i—C8—C4i107.94 (19)
C1—C2—H2B108.8O5—C9—N2124.9 (3)
C3—C2—H2B108.8O5—C9—H9A120.7 (17)
C1—C2—H2C108.8N2—C9—H9A114.4 (18)
C3—C2—H2C108.8N2—C10—H10A109.5
H2B—C2—H2C107.7N2—C10—H10B109.5
N1—C3—C2111.0 (2)H10A—C10—H10B109.5
N1—C3—H3A109.4N2—C10—H10C109.5
C2—C3—H3A109.4H10A—C10—H10C109.5
N1—C3—H3B109.4H10B—C10—H10C109.5
C2—C3—H3B109.4N2—C11—H11A109.5
H3A—C3—H3B108.0N2—C11—H11B109.5
O3—C4—N1125.2 (2)H11A—C11—H11B109.5
O3—C4—C8i128.8 (2)N2—C11—H11C109.5
N1—C4—C8i106.0 (2)H11A—C11—H11C109.5
O4—C5—N1125.5 (2)H11B—C11—H11C109.5
O4—C5—C6128.6 (2)C5—N1—C4112.35 (19)
N1—C5—C6105.9 (2)C5—N1—C3124.1 (2)
C7—C6—C8i122.5 (2)C4—N1—C3123.5 (2)
C7—C6—C5129.7 (2)C9—N2—C10121.1 (3)
C8i—C6—C5107.8 (2)C9—N2—C11121.6 (3)
C6—C7—C8115.0 (2)C10—N2—C11117.3 (3)
O1—C1—C2—C35.3 (4)C6—C5—N1—C40.0 (3)
O2—C1—C2—C3176.6 (3)O4—C5—N1—C31.9 (4)
C1—C2—C3—N1173.2 (2)C6—C5—N1—C3178.2 (2)
O4—C5—C6—C70.5 (4)O3—C4—N1—C5179.1 (2)
N1—C5—C6—C7179.4 (2)C8i—C4—N1—C50.6 (2)
O4—C5—C6—C8i179.4 (2)O3—C4—N1—C32.7 (4)
N1—C5—C6—C8i0.7 (2)C8i—C4—N1—C3177.6 (2)
C8i—C6—C7—C80.7 (4)C2—C3—N1—C588.7 (3)
C5—C6—C7—C8179.2 (2)C2—C3—N1—C489.2 (3)
C6—C7—C8—C6i0.7 (4)O5—C9—N2—C100.8 (5)
C6—C7—C8—C4i179.0 (2)O5—C9—N2—C11178.1 (4)
O4—C5—N1—C4180.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.821.782.583 (3)166
Symmetry code: (ii) x, y+3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O8·2C3H7NO
Mr506.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.542 (8), 8.611 (6), 12.902 (9)
β (°) 118.774 (8)
V3)1221.3 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.31 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12363, 2386, 1745
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.06
No. of reflections2386
No. of parameters167
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.782.583 (3)166
Symmetry code: (i) x, y+3/2, z3/2.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds