metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium bis­­(4-amino-3-methyl­benzene­sulfonate)

aDepartment of Chemistry, Qinghai Normal University, Xining 810008, People's Republic of China
*Correspondence e-mail: chenyt@qhnu.edu.cn

(Received 26 October 2009; accepted 4 November 2009; online 11 November 2009)

In the title mol­ecular salt, [Mg(H2O)6](C7H8NO3S)2, the Mg2+ cation lies on an inversion centre. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, thereby generating sheets parallel to (001).

Related literature

For the isostructural cobalt-containing compound, see: Zhang & Chen (2009[Zhang, W. & Chen, Y.-T. (2009). Acta Cryst. E65, m1548.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C7H8NO3S)2

  • Mr = 504.81

  • Monoclinic, P 21 /n

  • a = 6.3048 (13) Å

  • b = 7.0395 (15) Å

  • c = 24.356 (5) Å

  • β = 93.921 (3)°

  • V = 1078.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 273 K

  • 0.23 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.960

  • 5398 measured reflections

  • 1918 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.138

  • S = 1.27

  • 1918 reflections

  • 144 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O4 2.029 (3)
Mg1—O6 2.071 (3)
Mg1—O5 2.075 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.48 3.208 (5) 143
N1—H1B⋯O6ii 0.86 2.54 3.133 (5) 127
O4—H7⋯O3 0.85 1.90 2.748 (4) 178
O4—H8⋯O1iii 0.85 1.94 2.778 (4) 169
O5—H9⋯O2iii 0.85 1.97 2.810 (4) 168
O5—H10⋯O1iv 0.85 1.95 2.790 (4) 170
O6—H11⋯O2 0.85 1.94 2.776 (4) 169
O6—H12⋯O3v 0.85 2.01 2.835 (4) 163
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x-1, y-1, z; (v) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the isostructural cobalt-containing compound, see: Zhang & Chen (2009).

Experimental top

A solution of 1.0 mmol 4-amino-3-methyl-benzenesulfonic acid and 1.0 mmol NaOH in 10 ml ethanol was added to a solution of 0.5 mmol MgCl26H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 3 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from ethanol at room temperature.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96, N—H = 0.86, O—H = 0.85Å) and refined as riding with Uiso(H)= 1.2 Ueq(C,N) or 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids. Atoms with the suffix A are generated by (–x, –y, –z).
Hexaaquamagnesium bis(4-amino-3-methylbenzenesulfonate) top
Crystal data top
[Mg(H2O)6](C7H8NO3S)2F(000) = 532
Mr = 504.81Dx = 1.555 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3577 reflections
a = 6.3048 (13) Åθ = 3.0–28.6°
b = 7.0395 (15) ŵ = 0.34 mm1
c = 24.356 (5) ÅT = 273 K
β = 93.921 (3)°Block, colourless
V = 1078.5 (4) Å30.23 × 0.16 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1918 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 67
Tmin = 0.926, Tmax = 0.960k = 88
5398 measured reflectionsl = 2825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0175P)2 + 3.9593P]
where P = (Fo2 + 2Fc2)/3
1918 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.37 e Å3
9 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mg(H2O)6](C7H8NO3S)2V = 1078.5 (4) Å3
Mr = 504.81Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.3048 (13) ŵ = 0.34 mm1
b = 7.0395 (15) ÅT = 273 K
c = 24.356 (5) Å0.23 × 0.16 × 0.12 mm
β = 93.921 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1779 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.960Rint = 0.020
5398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0549 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.27Δρmax = 0.37 e Å3
1918 reflectionsΔρmin = 0.42 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.00000.00000.0216 (4)
S10.40358 (14)0.50773 (14)0.09733 (4)0.0218 (3)
O10.4934 (5)0.6661 (4)0.06800 (11)0.0317 (7)
O20.1712 (4)0.5034 (4)0.09088 (12)0.0297 (7)
O30.4968 (4)0.3258 (4)0.08251 (12)0.0304 (7)
O40.2913 (5)0.0074 (4)0.04083 (13)0.0375 (8)
H70.35750.10510.05330.056*
H80.36470.08830.05190.056*
O50.0976 (5)0.1937 (4)0.05737 (13)0.0366 (8)
H90.01460.28810.06240.055*
H100.22220.24010.05640.055*
O60.1022 (5)0.2297 (4)0.04427 (13)0.0340 (7)
H120.22510.27210.04980.052 (16)*
H110.01470.30330.06180.11 (3)*
N10.6584 (7)0.6327 (6)0.33201 (15)0.0465 (11)
H1A0.78280.67790.34080.056*
H1B0.57390.60700.35730.056*
C10.4753 (6)0.5435 (5)0.16775 (16)0.0217 (8)
C20.3351 (6)0.5006 (6)0.20762 (16)0.0248 (8)
H20.20130.45190.19710.030*
C30.3929 (6)0.5297 (5)0.26277 (16)0.0254 (9)
C40.5949 (7)0.6021 (6)0.27807 (16)0.0280 (9)
C50.7335 (7)0.6445 (6)0.23738 (17)0.0305 (9)
H50.86750.69360.24740.037*
C60.6748 (6)0.6147 (6)0.18287 (17)0.0276 (9)
H60.76890.64240.15620.033*
C70.2434 (7)0.4831 (7)0.30672 (18)0.0363 (10)
H7A0.11930.42090.29030.054*
H7B0.20220.59820.32430.054*
H7C0.31360.40060.33360.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0199 (9)0.0211 (9)0.0240 (9)0.0004 (8)0.0032 (7)0.0008 (8)
S10.0198 (5)0.0208 (5)0.0249 (5)0.0004 (4)0.0011 (3)0.0008 (4)
O10.0331 (16)0.0318 (16)0.0304 (15)0.0064 (13)0.0045 (12)0.0080 (13)
O20.0208 (14)0.0326 (16)0.0351 (16)0.0015 (13)0.0024 (11)0.0017 (13)
O30.0299 (16)0.0279 (16)0.0335 (16)0.0043 (13)0.0021 (12)0.0089 (13)
O40.0303 (16)0.0275 (16)0.0527 (19)0.0020 (13)0.0117 (14)0.0009 (15)
O50.0264 (16)0.0361 (17)0.0486 (19)0.0009 (13)0.0121 (14)0.0161 (15)
O60.0273 (16)0.0312 (16)0.0442 (18)0.0002 (14)0.0083 (13)0.0131 (14)
N10.051 (2)0.060 (3)0.028 (2)0.018 (2)0.0021 (17)0.004 (2)
C10.0220 (19)0.0166 (18)0.0266 (19)0.0008 (15)0.0018 (15)0.0004 (15)
C20.0227 (19)0.0198 (19)0.032 (2)0.0004 (16)0.0019 (16)0.0006 (17)
C30.032 (2)0.0158 (19)0.029 (2)0.0006 (16)0.0067 (16)0.0000 (16)
C40.034 (2)0.022 (2)0.028 (2)0.0019 (17)0.0015 (17)0.0017 (17)
C50.027 (2)0.029 (2)0.035 (2)0.0064 (18)0.0047 (18)0.0018 (18)
C60.023 (2)0.030 (2)0.031 (2)0.0028 (17)0.0046 (16)0.0009 (18)
C70.047 (3)0.030 (2)0.033 (2)0.006 (2)0.012 (2)0.002 (2)
Geometric parameters (Å, º) top
Mg1—O4i2.029 (3)N1—C41.364 (5)
Mg1—O42.029 (3)N1—H1A0.8600
Mg1—O6i2.071 (3)N1—H1B0.8600
Mg1—O62.071 (3)C1—C61.380 (5)
Mg1—O52.075 (3)C1—C21.390 (5)
Mg1—O5i2.075 (3)C2—C31.383 (6)
S1—O11.459 (3)C2—H20.9300
S1—O21.463 (3)C3—C41.399 (6)
S1—O31.465 (3)C3—C71.510 (6)
S1—C11.762 (4)C4—C51.398 (6)
O4—H70.8499C5—C61.370 (6)
O4—H80.8500C5—H50.9300
O5—H90.8500C6—H60.9300
O5—H100.8500C7—H7A0.9600
O6—H120.8500C7—H7B0.9600
O6—H110.8500C7—H7C0.9600
O4i—Mg1—O4180.0H12—O6—H11105.9
O4i—Mg1—O6i91.62 (13)C4—N1—H1A120.0
O4—Mg1—O6i88.38 (13)C4—N1—H1B120.0
O4i—Mg1—O688.38 (13)H1A—N1—H1B120.0
O4—Mg1—O691.62 (13)C6—C1—C2120.3 (4)
O6i—Mg1—O6180.0C6—C1—S1118.7 (3)
O4i—Mg1—O590.75 (12)C2—C1—S1121.0 (3)
O4—Mg1—O589.25 (12)C3—C2—C1120.6 (4)
O6i—Mg1—O587.41 (12)C3—C2—H2119.7
O6—Mg1—O592.59 (12)C1—C2—H2119.7
O4i—Mg1—O5i89.25 (12)C2—C3—C4119.2 (4)
O4—Mg1—O5i90.75 (12)C2—C3—C7121.4 (4)
O6i—Mg1—O5i92.59 (12)C4—C3—C7119.4 (4)
O6—Mg1—O5i87.41 (12)N1—C4—C5119.5 (4)
O5—Mg1—O5i180.0N1—C4—C3121.1 (4)
O1—S1—O2112.49 (18)C5—C4—C3119.4 (4)
O1—S1—O3111.84 (17)C6—C5—C4120.9 (4)
O2—S1—O3111.78 (17)C6—C5—H5119.5
O1—S1—C1106.55 (17)C4—C5—H5119.5
O2—S1—C1107.23 (17)C5—C6—C1119.7 (4)
O3—S1—C1106.52 (17)C5—C6—H6120.2
Mg1—O4—H7127.0C1—C6—H6120.2
Mg1—O4—H8126.1C3—C7—H7A109.5
H7—O4—H8106.5C3—C7—H7B109.5
Mg1—O5—H9113.8H7A—C7—H7B109.5
Mg1—O5—H10123.4C3—C7—H7C109.5
H9—O5—H10105.2H7A—C7—H7C109.5
Mg1—O6—H12132.6H7B—C7—H7C109.5
Mg1—O6—H11121.5
O1—S1—C1—C638.2 (4)C2—C3—C4—N1179.9 (4)
O2—S1—C1—C6158.9 (3)C7—C3—C4—N10.5 (6)
O3—S1—C1—C681.3 (3)C2—C3—C4—C50.4 (6)
O1—S1—C1—C2142.0 (3)C7—C3—C4—C5179.8 (4)
O2—S1—C1—C221.4 (4)N1—C4—C5—C6179.8 (4)
O3—S1—C1—C298.4 (3)C3—C4—C5—C60.5 (6)
C6—C1—C2—C30.4 (6)C4—C5—C6—C10.6 (6)
S1—C1—C2—C3179.8 (3)C2—C1—C6—C50.5 (6)
C1—C2—C3—C40.3 (6)S1—C1—C6—C5179.7 (3)
C1—C2—C3—C7179.7 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.862.483.208 (5)143
N1—H1B···O6iii0.862.543.133 (5)127
O4—H7···O30.851.902.748 (4)178
O4—H8···O1iv0.851.942.778 (4)169
O5—H9···O2iv0.851.972.810 (4)168
O5—H10···O1v0.851.952.790 (4)170
O6—H11···O20.851.942.776 (4)169
O6—H12···O3vi0.852.012.835 (4)163
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y1, z; (v) x1, y1, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C7H8NO3S)2
Mr504.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)6.3048 (13), 7.0395 (15), 24.356 (5)
β (°) 93.921 (3)
V3)1078.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.23 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.926, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5398, 1918, 1779
Rint0.020
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.138, 1.27
No. of reflections1918
No. of parameters144
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O42.029 (3)Mg1—O52.075 (3)
Mg1—O62.071 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.483.208 (5)143
N1—H1B···O6ii0.862.543.133 (5)127
O4—H7···O30.851.902.748 (4)178
O4—H8···O1iii0.851.942.778 (4)169
O5—H9···O2iii0.851.972.810 (4)168
O5—H10···O1iv0.851.952.790 (4)170
O6—H11···O20.851.942.776 (4)169
O6—H12···O3v0.852.012.835 (4)163
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x1, y1, z; (v) x1, y, z.
 

Acknowledgements

The authors would like to thank the Program for New Century Excellent Talents in Universities for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. & Chen, Y.-T. (2009). Acta Cryst. E65, m1548.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds