organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o2973-o2974

3-Benzyl-7-chloro-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 27 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, C31H29ClN2O2S, the pyrrolidine ring adopts an envelope conformation with the methine C atom adjacent to the NH group as the flap atom. The tetra­hydro­pyridine ring has a half-chair conformation. The two rings are trans-fused. The chloro­benzene ring and the adjacent phenyl ring form a dihedral angle of 77.9 (1)°. The benzyl phenyl and the tosyl phenyl rings are oriented at a dihedral angle of 88.0 (1)°. In the crystal, mol­ecules are linked into chains along the a axis by N—H⋯Cl and C—H⋯Cl hydrogen bonds and the adjacent chains are cross-linked via C—H⋯π inter­actions.

Related literature

For the caspase-3 inhibitory, vasorelaxing and anti­leukemic activities of pyrroloquinoline compounds, see: Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Il Farm. 60, 804-809.]); Ferlin et al. (2002[Ferlin, M. G., Chiarelotto, G., Antonucci, F., Caparrotta, L. & Froldi, G. (2002). Eur. J. Med. Chem. 37, 427-434.]); Anderson et al. (1988[Anderson, W. K., Heider, A. R., Raju, N. & Yucht, J. A. (1988). J. Med. Chem. 31, 2097-2102.]). For related structures, see: Sudha et al. (2007[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914-o4915.], 2008a[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008a). Acta Cryst. E64, o134.],b[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008b). Acta Cryst. E64, o425.]). For the crystal structure of the unchlorinated analogue, see: Chinnakali et al. (2009[Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2923.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29ClN2O2S

  • Mr = 529.07

  • Orthorhombic, P 21 21 21

  • a = 10.0106 (1) Å

  • b = 11.8612 (1) Å

  • c = 21.8256 (2) Å

  • V = 2591.52 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.28 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.962

  • 35839 measured reflections

  • 8047 independent reflections

  • 7259 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.02

  • 8047 reflections

  • 339 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3555 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Cl1i 0.84 (2) 2.83 (2) 3.5947 (13) 153 (2)
C27—H27⋯Cl1i 0.93 2.77 3.5980 (16) 149
C17—H17⋯Cg2ii 0.93 2.70 3.5403 (16) 151
C29—H29⋯Cg1iii 0.93 2.68 3.6014 (19) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C19–C24 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrroloquinoline derivatives have been found to exhibit caspase-3 inhibitory (Kravchenko et al., 2005), vasorelaxing (Ferlin et al., 2002) and antileukemic (Anderson et al., 1988) activities. Previously, we have reported crystal structures of some pyrroloquinoline derivatives (Sudha et al., 2007,2008a,b). Now, herein the crystal structure of the title compound is reported.

The pyrrolidine ring adopts an envelope conformation with C10, the envelope flap, lying 0.695 (2) Å out of the plane formed by the rest of the atoms of the ring (r.m.s. deviation 0.019 Å). The asymmetry parameter (Duax et al., 1976) ΔCs[C10] = 5.3 (1)° and the puckering parameters (Cremer & Pople, 1975) q2 = 0.464 (2) Å and ϕ = 102.7 (2)°. The tosyl group is attached to the pyrrolidine ring in a equtorial position. The tetrahydropyridine ring adopts a half-chair conformation, with the local twofold rotation axis running through the midpoint of bonds C2—C10 and C4—C9 [asymmetry parameter ΔC2[C2—C10] = 3.6 (2)°]. The phenyl ring attached to the tetrahydropyridine ring is in a biaxial position. The dihedral angle between the C4—C9 and C19—C24 rings is 77.9 (1)° and that between the C12—C17 and C26—C31 rings is 88.0 (1)°. Bond lengths and angles are comparable with those in the unchlorinated derivative, 3-benzyl-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H-pyrrolo[3,4-b]quinoline (Chinnakali et al., 2009).

The N2—H1N2···Cl1 and C27—H27···Cl1 hydrogen bonds (Table 1) form a pair of bifurcated acceptor bonds, generating a ring of graph-set motif R12(9). These hydrogen bonds link the molecules into a chain along the a axis (Fig. 2). The adjacent chains are crosslinked via C—H···π interactions involving the benzyl phenyl and the phenyl ring bound to the fused ring system.

A superposition of the non-H atoms (except the N-bound H atom) of the unchlorinated derivative (Chinnakali et al., 2009) with those of the title molecule using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 1.27 Å (Fig. 3). In the unchlorinated derivative, the benzyl phenyl ring is oriented in such a way to form an N—H···π interaction. But in the title molecule, the benzyl group is twisted away from the N—H group to make it available for participation in an N—H···Cl hydrogen bond.

Related literature top

For the caspase-3 inhibitory, vasorelaxing and antileukemic activities of pyrroloquinoline compounds, see: Kravchenko et al. (2005); Ferlin et al. (2002); Anderson et al. (1988). For related structures, see: Sudha et al. (2007, 2008a,b). For the crystal structure of the unchlorinated analogue, see: Chinnakali et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 and Cg2 are the centroids of the C19–C24 and C26–C31 rings, respectively.

Experimental top

InCl3 (20 mol%) was added to a mixture of S-2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and p-chloroaniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located in a difference map and refined freely [N—H = 0.84 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for methyl groups. Reflection 002 was partially obscured by the beam stop and was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
[Figure 3] Fig. 3. Fit of the title molecule (solid lines) with its unchlorinated analogue (dashed lines). C-bound H atoms have been omitted for clarity.
3-Benzyl-7-chloro-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C31H29ClN2O2SF(000) = 1112
Mr = 529.07Dx = 1.356 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9900 reflections
a = 10.0106 (1) Åθ = 2.5–29.9°
b = 11.8612 (1) ŵ = 0.26 mm1
c = 21.8256 (2) ÅT = 100 K
V = 2591.52 (4) Å3Block, colourless
Z = 40.28 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8047 independent reflections
Radiation source: fine-focus sealed tube7259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1314
Tmin = 0.930, Tmax = 0.962k = 1717
35839 measured reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.3209P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8047 reflectionsΔρmax = 0.42 e Å3
339 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 3555 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C31H29ClN2O2SV = 2591.52 (4) Å3
Mr = 529.07Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0106 (1) ŵ = 0.26 mm1
b = 11.8612 (1) ÅT = 100 K
c = 21.8256 (2) Å0.28 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8047 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7259 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.962Rint = 0.045
35839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.42 e Å3
S = 1.02Δρmin = 0.31 e Å3
8047 reflectionsAbsolute structure: Flack (1983), 3555 Friedel pairs
339 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99020 (3)0.23630 (3)0.611010 (16)0.01750 (8)
S10.87572 (4)0.74890 (3)0.237629 (16)0.01701 (8)
O11.00459 (12)0.75400 (9)0.20897 (5)0.0229 (2)
O20.75758 (13)0.75019 (10)0.20046 (5)0.0256 (2)
N10.87251 (14)0.63195 (10)0.27756 (6)0.0150 (2)
N20.72707 (13)0.48831 (11)0.40955 (6)0.0159 (2)
H1N20.654 (2)0.4565 (17)0.4026 (10)0.027 (5)*
C10.99589 (16)0.60584 (12)0.31441 (7)0.0160 (3)
H1A1.05090.67250.31960.019*
H1B1.04860.54720.29500.019*
C20.94008 (14)0.56589 (12)0.37568 (7)0.0137 (3)
H20.92050.63200.40110.016*
C31.02378 (14)0.48294 (12)0.41319 (7)0.0132 (3)
H31.05720.42460.38530.016*
C40.93338 (14)0.42593 (12)0.46062 (7)0.0131 (3)
C50.99179 (15)0.36541 (11)0.50869 (7)0.0142 (3)
H51.08430.36190.51180.017*
C60.91344 (15)0.31068 (12)0.55164 (7)0.0141 (3)
C70.77481 (15)0.31665 (12)0.54938 (7)0.0149 (3)
H70.72280.28110.57890.018*
C80.71615 (15)0.37664 (13)0.50226 (7)0.0155 (3)
H80.62350.38170.50040.019*
C90.79311 (14)0.43009 (12)0.45709 (7)0.0134 (3)
C100.80912 (14)0.51222 (12)0.35619 (7)0.0133 (3)
H100.82660.44250.33350.016*
C110.75027 (16)0.60125 (12)0.31332 (7)0.0147 (3)
H110.72370.66660.33790.018*
C120.86417 (16)0.86286 (11)0.28916 (7)0.0159 (3)
C130.73961 (16)0.90828 (13)0.30416 (8)0.0201 (3)
H130.66170.87760.28800.024*
C140.73412 (16)0.99983 (13)0.34358 (8)0.0212 (3)
H140.65161.03060.35370.025*
C150.85024 (15)1.04677 (12)0.36832 (7)0.0170 (3)
C160.97308 (15)0.99944 (12)0.35296 (7)0.0175 (3)
H161.05091.02970.36940.021*
C170.98130 (15)0.90773 (12)0.31342 (7)0.0157 (3)
H171.06380.87680.30330.019*
C180.84443 (18)1.14674 (14)0.41044 (8)0.0236 (3)
H18A0.92441.19070.40590.035*
H18B0.83691.12120.45200.035*
H18C0.76831.19220.40030.035*
C191.14346 (15)0.53881 (12)0.44351 (7)0.0158 (3)
C201.12450 (17)0.61970 (14)0.48937 (7)0.0217 (3)
H201.03820.64020.50060.026*
C211.2328 (2)0.66992 (16)0.51843 (9)0.0292 (4)
H211.21880.72450.54830.035*
C221.36117 (19)0.63871 (17)0.50286 (9)0.0324 (4)
H221.43380.67140.52270.039*
C231.38142 (17)0.55904 (16)0.45789 (10)0.0318 (4)
H231.46800.53800.44740.038*
C241.27344 (16)0.50968 (14)0.42795 (8)0.0221 (3)
H241.28850.45680.39730.027*
C250.62882 (16)0.56231 (13)0.27564 (7)0.0171 (3)
H25A0.55880.54050.30400.020*
H25B0.59610.62640.25250.020*
C260.65082 (14)0.46589 (12)0.23147 (7)0.0150 (3)
C270.65518 (16)0.35343 (13)0.25089 (7)0.0192 (3)
H270.64660.33690.29240.023*
C280.67212 (16)0.26635 (13)0.20928 (8)0.0237 (3)
H280.67600.19220.22300.028*
C290.68336 (18)0.28986 (14)0.14704 (8)0.0253 (4)
H290.69450.23150.11900.030*
C300.67796 (17)0.40097 (14)0.12689 (8)0.0239 (3)
H300.68500.41710.08530.029*
C310.66208 (16)0.48796 (13)0.16892 (7)0.0189 (3)
H310.65890.56210.15510.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01853 (15)0.02012 (16)0.01386 (15)0.00295 (13)0.00000 (12)0.00457 (12)
S10.02840 (18)0.01221 (14)0.01041 (15)0.00087 (15)0.00294 (13)0.00055 (13)
O10.0372 (6)0.0165 (5)0.0151 (5)0.0010 (6)0.0072 (5)0.0006 (4)
O20.0404 (6)0.0180 (5)0.0185 (5)0.0022 (5)0.0136 (5)0.0016 (5)
N10.0210 (6)0.0123 (5)0.0117 (6)0.0001 (5)0.0011 (5)0.0020 (4)
N20.0138 (6)0.0219 (6)0.0120 (6)0.0002 (5)0.0011 (5)0.0026 (5)
C10.0179 (7)0.0172 (6)0.0130 (7)0.0009 (6)0.0002 (6)0.0031 (5)
C20.0168 (6)0.0134 (6)0.0108 (7)0.0004 (5)0.0010 (5)0.0000 (5)
C30.0155 (6)0.0127 (6)0.0114 (6)0.0007 (5)0.0016 (5)0.0006 (5)
C40.0146 (6)0.0124 (6)0.0121 (7)0.0003 (5)0.0012 (5)0.0013 (5)
C50.0144 (6)0.0142 (6)0.0139 (7)0.0004 (5)0.0002 (5)0.0003 (5)
C60.0188 (7)0.0140 (6)0.0096 (7)0.0020 (5)0.0031 (5)0.0001 (5)
C70.0164 (7)0.0161 (6)0.0121 (7)0.0012 (5)0.0015 (5)0.0011 (5)
C80.0148 (6)0.0174 (7)0.0145 (7)0.0009 (5)0.0002 (5)0.0015 (5)
C90.0155 (6)0.0138 (6)0.0109 (7)0.0006 (5)0.0003 (5)0.0021 (5)
C100.0162 (6)0.0129 (6)0.0109 (7)0.0004 (5)0.0014 (5)0.0002 (5)
C110.0187 (7)0.0141 (6)0.0112 (7)0.0016 (5)0.0005 (6)0.0008 (5)
C120.0227 (7)0.0122 (6)0.0129 (7)0.0002 (5)0.0008 (6)0.0000 (5)
C130.0178 (7)0.0176 (7)0.0250 (9)0.0002 (6)0.0048 (6)0.0004 (6)
C140.0179 (7)0.0186 (7)0.0272 (8)0.0028 (6)0.0003 (6)0.0009 (6)
C150.0203 (7)0.0145 (6)0.0163 (7)0.0007 (5)0.0030 (6)0.0005 (5)
C160.0177 (7)0.0174 (7)0.0175 (7)0.0021 (5)0.0002 (5)0.0018 (6)
C170.0156 (7)0.0145 (6)0.0171 (7)0.0020 (5)0.0002 (6)0.0001 (5)
C180.0277 (8)0.0205 (7)0.0225 (8)0.0014 (6)0.0042 (7)0.0066 (6)
C190.0164 (7)0.0158 (6)0.0152 (7)0.0012 (5)0.0012 (5)0.0054 (5)
C200.0224 (8)0.0236 (7)0.0190 (8)0.0030 (7)0.0015 (6)0.0008 (6)
C210.0353 (10)0.0311 (9)0.0211 (9)0.0126 (8)0.0070 (7)0.0008 (7)
C220.0266 (9)0.0339 (9)0.0366 (11)0.0130 (8)0.0166 (8)0.0158 (8)
C230.0153 (7)0.0314 (9)0.0486 (12)0.0014 (7)0.0031 (8)0.0182 (8)
C240.0174 (7)0.0178 (7)0.0311 (9)0.0020 (6)0.0026 (6)0.0071 (6)
C250.0182 (7)0.0201 (6)0.0129 (7)0.0040 (6)0.0020 (6)0.0005 (5)
C260.0135 (6)0.0176 (6)0.0139 (7)0.0005 (5)0.0010 (5)0.0008 (5)
C270.0188 (7)0.0206 (7)0.0181 (8)0.0038 (6)0.0006 (6)0.0030 (6)
C280.0229 (7)0.0157 (7)0.0325 (9)0.0040 (6)0.0003 (7)0.0000 (6)
C290.0283 (8)0.0223 (7)0.0253 (9)0.0029 (6)0.0037 (7)0.0103 (6)
C300.0297 (8)0.0273 (8)0.0148 (8)0.0015 (7)0.0033 (6)0.0037 (6)
C310.0234 (7)0.0194 (7)0.0141 (7)0.0009 (6)0.0039 (6)0.0011 (6)
Geometric parameters (Å, º) top
Cl1—C61.7459 (15)C14—C151.397 (2)
S1—O21.4341 (12)C14—H140.93
S1—O11.4349 (12)C15—C161.393 (2)
S1—N11.6386 (12)C15—C181.502 (2)
S1—C121.7623 (15)C16—C171.391 (2)
N1—C111.496 (2)C16—H160.93
N1—C11.506 (2)C17—H170.93
N2—C91.4107 (19)C18—H18A0.96
N2—C101.4531 (19)C18—H18B0.96
N2—H1N20.84 (2)C18—H18C0.96
C1—C21.525 (2)C19—C241.388 (2)
C1—H1A0.97C19—C201.399 (2)
C1—H1B0.97C20—C211.390 (2)
C2—C101.518 (2)C20—H200.93
C2—C31.530 (2)C21—C221.380 (3)
C2—H20.98C21—H210.93
C3—C191.521 (2)C22—C231.377 (3)
C3—C41.532 (2)C22—H220.93
C3—H30.98C23—C241.392 (3)
C4—C51.399 (2)C23—H230.93
C4—C91.4072 (19)C24—H240.93
C5—C61.384 (2)C25—C261.512 (2)
C5—H50.93C25—H25A0.97
C6—C71.390 (2)C25—H25B0.97
C7—C81.382 (2)C26—C311.394 (2)
C7—H70.93C26—C271.400 (2)
C8—C91.403 (2)C27—C281.386 (2)
C8—H80.93C27—H270.93
C10—C111.529 (2)C28—C291.391 (3)
C10—H100.98C28—H280.93
C11—C251.539 (2)C29—C301.390 (2)
C11—H110.98C29—H290.93
C12—C171.392 (2)C30—C311.390 (2)
C12—C131.397 (2)C30—H300.93
C13—C141.386 (2)C31—H310.93
C13—H130.93
O2—S1—O1119.63 (7)C14—C13—C12118.86 (15)
O2—S1—N1107.08 (7)C14—C13—H13120.6
O1—S1—N1106.57 (7)C12—C13—H13120.6
O2—S1—C12107.38 (7)C13—C14—C15121.25 (15)
O1—S1—C12107.75 (7)C13—C14—H14119.4
N1—S1—C12107.97 (7)C15—C14—H14119.4
C11—N1—C1110.00 (11)C16—C15—C14118.75 (14)
C11—N1—S1119.97 (10)C16—C15—C18119.99 (14)
C1—N1—S1116.23 (10)C14—C15—C18121.27 (14)
C9—N2—C10114.84 (12)C17—C16—C15121.11 (14)
C9—N2—H1N2108.8 (14)C17—C16—H16119.4
C10—N2—H1N2115.8 (14)C15—C16—H16119.4
N1—C1—C2103.40 (12)C16—C17—C12119.01 (14)
N1—C1—H1A111.1C16—C17—H17120.5
C2—C1—H1A111.1C12—C17—H17120.5
N1—C1—H1B111.1C15—C18—H18A109.5
C2—C1—H1B111.1C15—C18—H18B109.5
H1A—C1—H1B109.0H18A—C18—H18B109.5
C10—C2—C1101.60 (12)C15—C18—H18C109.5
C10—C2—C3110.69 (11)H18A—C18—H18C109.5
C1—C2—C3117.94 (12)H18B—C18—H18C109.5
C10—C2—H2108.7C24—C19—C20118.21 (15)
C1—C2—H2108.7C24—C19—C3121.56 (14)
C3—C2—H2108.7C20—C19—C3120.21 (13)
C19—C3—C2112.59 (11)C21—C20—C19120.94 (17)
C19—C3—C4111.32 (12)C21—C20—H20119.5
C2—C3—C4108.78 (12)C19—C20—H20119.5
C19—C3—H3108.0C22—C21—C20119.93 (18)
C2—C3—H3108.0C22—C21—H21120.0
C4—C3—H3108.0C20—C21—H21120.0
C5—C4—C9118.43 (13)C23—C22—C21119.78 (17)
C5—C4—C3119.09 (13)C23—C22—H22120.1
C9—C4—C3122.47 (13)C21—C22—H22120.1
C6—C5—C4120.78 (14)C22—C23—C24120.57 (17)
C6—C5—H5119.6C22—C23—H23119.7
C4—C5—H5119.6C24—C23—H23119.7
C5—C6—C7121.18 (14)C19—C24—C23120.54 (16)
C5—C6—Cl1119.37 (11)C19—C24—H24119.7
C7—C6—Cl1119.42 (12)C23—C24—H24119.7
C8—C7—C6118.47 (14)C26—C25—C11116.91 (13)
C8—C7—H7120.8C26—C25—H25A108.1
C6—C7—H7120.8C11—C25—H25A108.1
C7—C8—C9121.50 (14)C26—C25—H25B108.1
C7—C8—H8119.2C11—C25—H25B108.1
C9—C8—H8119.2H25A—C25—H25B107.3
C8—C9—C4119.59 (14)C31—C26—C27118.21 (14)
C8—C9—N2118.73 (13)C31—C26—C25119.60 (13)
C4—C9—N2121.67 (13)C27—C26—C25122.14 (14)
N2—C10—C2110.21 (12)C28—C27—C26121.02 (15)
N2—C10—C11114.05 (12)C28—C27—H27119.5
C2—C10—C11102.39 (11)C26—C27—H27119.5
N2—C10—H10110.0C27—C28—C29120.02 (15)
C2—C10—H10110.0C27—C28—H28120.0
C11—C10—H10110.0C29—C28—H28120.0
N1—C11—C1099.92 (12)C30—C29—C28119.71 (16)
N1—C11—C25116.13 (12)C30—C29—H29120.1
C10—C11—C25115.10 (12)C28—C29—H29120.1
N1—C11—H11108.4C31—C30—C29119.96 (16)
C10—C11—H11108.4C31—C30—H30120.0
C25—C11—H11108.4C29—C30—H30120.0
C17—C12—C13121.01 (13)C30—C31—C26121.07 (14)
C17—C12—S1118.72 (12)C30—C31—H31119.5
C13—C12—S1120.25 (12)C26—C31—H31119.5
O2—S1—N1—C1150.80 (12)C2—C10—C11—N143.40 (13)
O1—S1—N1—C11179.92 (10)N2—C10—C11—C2572.42 (16)
C12—S1—N1—C1164.55 (12)C2—C10—C11—C25168.55 (12)
O2—S1—N1—C1172.80 (10)O2—S1—C12—C17155.56 (12)
O1—S1—N1—C143.67 (12)O1—S1—C12—C1725.46 (14)
C12—S1—N1—C171.85 (12)N1—S1—C12—C1789.29 (13)
C11—N1—C1—C23.90 (14)O2—S1—C12—C1323.14 (15)
S1—N1—C1—C2136.63 (10)O1—S1—C12—C13153.24 (12)
N1—C1—C2—C1030.84 (14)N1—S1—C12—C1392.01 (13)
N1—C1—C2—C3151.97 (12)C17—C12—C13—C140.4 (2)
C10—C2—C3—C19169.50 (12)S1—C12—C13—C14178.31 (12)
C1—C2—C3—C1974.18 (16)C12—C13—C14—C150.1 (2)
C10—C2—C3—C445.62 (15)C13—C14—C15—C160.4 (2)
C1—C2—C3—C4161.95 (12)C13—C14—C15—C18179.29 (15)
C19—C3—C4—C541.60 (17)C14—C15—C16—C170.5 (2)
C2—C3—C4—C5166.23 (12)C18—C15—C16—C17179.16 (14)
C19—C3—C4—C9139.71 (14)C15—C16—C17—C120.2 (2)
C2—C3—C4—C915.08 (19)C13—C12—C17—C160.2 (2)
C9—C4—C5—C60.2 (2)S1—C12—C17—C16178.46 (11)
C3—C4—C5—C6178.56 (13)C2—C3—C19—C24115.72 (15)
C4—C5—C6—C71.8 (2)C4—C3—C19—C24121.83 (15)
C4—C5—C6—Cl1179.87 (11)C2—C3—C19—C2065.90 (17)
C5—C6—C7—C81.5 (2)C4—C3—C19—C2056.56 (17)
Cl1—C6—C7—C8179.53 (11)C24—C19—C20—C210.2 (2)
C6—C7—C8—C90.5 (2)C3—C19—C20—C21178.68 (15)
C7—C8—C9—C42.1 (2)C19—C20—C21—C221.1 (3)
C7—C8—C9—N2178.85 (14)C20—C21—C22—C231.0 (3)
C5—C4—C9—C81.7 (2)C21—C22—C23—C240.0 (3)
C3—C4—C9—C8179.61 (12)C20—C19—C24—C230.7 (2)
C5—C4—C9—N2179.25 (12)C3—C19—C24—C23177.67 (14)
C3—C4—C9—N20.5 (2)C22—C23—C24—C190.9 (2)
C10—N2—C9—C8162.78 (13)N1—C11—C25—C2654.31 (17)
C10—N2—C9—C418.1 (2)C10—C11—C25—C2661.90 (18)
C9—N2—C10—C249.72 (16)C11—C25—C26—C31103.37 (17)
C9—N2—C10—C11164.22 (12)C11—C25—C26—C2779.21 (19)
C1—C2—C10—N2168.63 (12)C31—C26—C27—C280.9 (2)
C3—C2—C10—N265.30 (15)C25—C26—C27—C28178.35 (14)
C1—C2—C10—C1146.93 (14)C26—C27—C28—C290.8 (2)
C3—C2—C10—C11172.99 (11)C27—C28—C29—C300.2 (3)
C1—N1—C11—C1024.29 (13)C28—C29—C30—C310.3 (3)
S1—N1—C11—C10163.12 (9)C29—C30—C31—C260.3 (3)
C1—N1—C11—C25148.72 (12)C27—C26—C31—C300.4 (2)
S1—N1—C11—C2572.44 (15)C25—C26—C31—C30177.87 (15)
N2—C10—C11—N1162.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl1i0.84 (2)2.83 (2)3.5947 (13)153 (2)
C25—H25B···O20.972.463.0529 (19)119
C27—H27···Cl1i0.932.773.5980 (16)149
C17—H17···Cg2ii0.932.703.5403 (16)151
C29—H29···Cg1iii0.932.683.6014 (19)170
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H29ClN2O2S
Mr529.07
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.0106 (1), 11.8612 (1), 21.8256 (2)
V3)2591.52 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.28 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.930, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
35839, 8047, 7259
Rint0.045
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.02
No. of reflections8047
No. of parameters339
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.31
Absolute structureFlack (1983), 3555 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl1i0.84 (2)2.83 (2)3.5947 (13)153 (2)
C27—H27···Cl1i0.932.773.5980 (16)149
C17—H17···Cg2ii0.932.703.5403 (16)151
C29—H29···Cg1iii0.932.683.6014 (19)170
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Footnotes

Working at: Department of Physics, R. M. K. Engineering Collge, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAnderson, W. K., Heider, A. R., Raju, N. & Yucht, J. A. (1988). J. Med. Chem. 31, 2097–2102.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFerlin, M. G., Chiarelotto, G., Antonucci, F., Caparrotta, L. & Froldi, G. (2002). Eur. J. Med. Chem. 37, 427–434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Il Farm. 60, 804–809.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008a). Acta Cryst. E64, o134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008b). Acta Cryst. E64, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o2973-o2974
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds