organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3001-o3002

3-Benzyl-7-bromo-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 30 October 2009; accepted 1 November 2009; online 7 November 2009)

In the title compound, C31H29BrN2O2S, the pyrrolidine ring is in a twist conformation and the tetra­hydro­pyridine ring adopts an envelope conformation with the methine C atom adjacent to the NH group as the flap atom; the two rings are trans-fused. The bromo­benzene ring and the nearest phenyl ring form a dihedral angle of 82.72 (10)°. The benzyl phenyl and the tosyl phenyl rings are oriented at a dihedral angle of 75.57 (11)°. An intra­molecular N—H⋯π inter­action is observed. In the crystal, mol­ecules are linked into chains running along [101] by C—H⋯O hydrogen bonds and the chains are cross-linked via weak C—H⋯π inter­actions.

Related literature

For the biological activity of pyrroloquinoline derivatives, see: Peng et al. (2002[Peng, H., Kim, D.-I., Sarkaria, J. N., Cho, Y.-S., Abraham, R. T. & Zalkow, L. H. (2002). Bioorg. Med. Chem. 10, 167-174.]); Metobo et al. (2009[Metobo, S., Mish, M., Jin, H., Jabri, S., Lansdown, R., Chen, X., Tsiang, M., Wright, M. & Kim, C. U. (2009). Bioorg. Med. Chem. Lett. 19, 1187-1190.]); Ferlin et al. (2005[Ferlin, M. G., Marzano, C., Dalla Via, L., Chilin, A., Zagotto, G., Guiotto, A. & Moro, S. (2005). Bioorg. Med. Chem. 13, 4733-4739.]); Ryu et al. (2009[Ryu, C. K., Lee, J. Y., Jeong, S. H. & Nho, J. H. (2009). Bioorg. Med. Chem. Lett. 19, 146-148.]); Tsuji et al. (1995[Tsuji, K., Tsubouchi, H. & Ishikawa, H. (1995). Chem. Pharm. Bull. (Tokyo), 43, 1678-1682.]); Ferlin et al. (2001[Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2001). Bioorg. Med. Chem. 9, 1843-1848.]). For the crystal structures of chlorine and unbrominated analogues, see: Chinnakali et al. (2009a[Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009a). Acta Cryst. E65, o2923.],b[Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009b). Acta Cryst. E65, o2973-o2974.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29BrN2O2S

  • Mr = 573.53

  • Monoclinic, P 21 /c

  • a = 8.8992 (2) Å

  • b = 27.5824 (5) Å

  • c = 13.3668 (2) Å

  • β = 127.190 (1)°

  • V = 2613.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 100 K

  • 0.39 × 0.28 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.641, Tmax = 0.805

  • 43436 measured reflections

  • 7624 independent reflections

  • 6348 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.096

  • S = 1.06

  • 7624 reflections

  • 339 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯O2i 0.93 2.57 3.207 (3) 126
N2—H1N2⋯Cg3 0.83 (3) 2.53 (3) 3.289 (2) 152 (3)
C3—H3⋯Cg3ii 0.98 2.98 3.924 (2) 162
C18—H18ACg2iii 0.96 2.94 3.737 (3) 141
C21—H21⋯Cg1iv 0.93 2.80 3.676 (2) 158
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) -x+1, -y, -z+1. Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12–C17 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrroloquinoline derivatives act as potent inhibitors for PI3-kinase related kinases (Peng et al., 2002) and as HIV integrase inhibitors (Metobo et al., 2009). These derivatives have been investigated as potential anticancer drugs (Ferlin et al., 2005) and are found to exhibit antifungal (Ryu et al., 2009), antibacterial (Tsuji et al., 1995) and antiproliferative (Ferlin et al., 2001) activities. As part of our studies on pyrroloquinoline derivatives, we report here the crystal structure of the title compound.

Bond lengths and angles are comparable with those in chlorine (Chinnakali et al., 2009a) and unbrominated (Chinnakali et al., 2009b) analouges. The pyrrolidine ring adopts a twist conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.408 (2) Å and ϕ = 82.2 (3)°. The tetrahydropyridine ring adopts an envelope conformation with C10, the envelope flap, lying 0.713 (2) Å out of the plane formed by the rest of the atoms (N2/C2—C4/C9) of the ring (r.m.s. deviation 0.053 Å). The asymmetry parameter (Duax et al., 1976) ΔCs[C10] = 12.1 (2)° and the puckering parameters (Cremer & Pople, 1975) Q = 0.537 (2) Å, θ = 128.5 (2)° and ϕ = 103.2 (3)°. The dihedral angle between the C4—C9 and C19—C24 rings is 82.72 (10)° and that between the C12—C17 and C26—C31 rings is 75.57 (11)°.

The molecules are linked into chains running along the [101] by C—H···O hydrogen bonds (Fig.2). The chains are cross-linked into a three-dimensional network via C—H···π interactions (Table 2) involving the C4—C9, C12—C17 and C26—C31 rings.

A superposition of the non-H atoms of the chlorine (Chinnakali et al., 2009a) and unbrominated (Chinnakali et al., 2009b) analouges with those of the title molecule using XP in SHELXTL (Sheldrick, 2008) is shown in Fig.3. The title molecule fits well (r.m.s. deviation 0.415 Å) with the unbrominated analouge. But the chlorine and bromine analouges differ significantly in the orientations of the benzyl group. In the title molecule as well as in the unbrominated derivative, the benzyl phenyl rings is oriented in such a way to form an N—H···π interaction. But in the chlorine analouge, the benzyl group is twisted away from the N—H group to form an N—H···Cl hydrogen bond.

Related literature top

For the biological activity of pyrroloquinoline derivatives, see: Peng et al. (2002); Metobo et al. (2009); Ferlin et al. (2005); Ryu et al. (2009); Tsuji et al. (1995); Ferlin et al. (2001). For the crystal structures of chlorine and unbrominated analogues, see: Chinnakali et al. (2009a,b). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C12-C17 and C26–C31 rings, respectively.

Experimental top

InCl3 (20 mol%) was added to a mixture of S-2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and p-bromoaniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. Colourless blocks of (I) were recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located in a difference map and refined freely [N—H = 0.83 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. The dotted line indicates an N—H···π interaction.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis, shows chains running along the [101]. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
[Figure 3] Fig. 3. Super-position fit of (I) (solid lines), with chlorinated (Cl in green) and unchlorinated analogues (dashed lines). H atoms have been omitted for clarity.
3-Benzyl-7-bromo-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C31H29BrN2O2SF(000) = 1184
Mr = 573.53Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9860 reflections
a = 8.8992 (2) Åθ = 2.4–37.0°
b = 27.5824 (5) ŵ = 1.69 mm1
c = 13.3668 (2) ÅT = 100 K
β = 127.190 (1)°Block, colourless
V = 2613.78 (9) Å30.39 × 0.28 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7624 independent reflections
Radiation source: fine-focus sealed tube6348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1112
Tmin = 0.641, Tmax = 0.805k = 3538
43436 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0447P)2 + 2.281P]
where P = (Fo2 + 2Fc2)/3
7624 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C31H29BrN2O2SV = 2613.78 (9) Å3
Mr = 573.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8992 (2) ŵ = 1.69 mm1
b = 27.5824 (5) ÅT = 100 K
c = 13.3668 (2) Å0.39 × 0.28 × 0.13 mm
β = 127.190 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7624 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6348 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.805Rint = 0.034
43436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.82 e Å3
7624 reflectionsΔρmin = 0.71 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02354 (3)0.121549 (7)0.223962 (19)0.01926 (6)
S11.38753 (6)0.137930 (17)0.96077 (4)0.01528 (10)
O11.4895 (2)0.12512 (5)0.91282 (14)0.0208 (3)
O21.46953 (19)0.17022 (5)1.06590 (13)0.0203 (3)
N11.1910 (2)0.16359 (6)0.84519 (15)0.0142 (3)
N20.7082 (2)0.15745 (6)0.74366 (15)0.0142 (3)
H1N20.698 (4)0.1741 (10)0.791 (3)0.029 (7)*
C11.0890 (3)0.14242 (7)0.71672 (18)0.0162 (4)
H1A1.15380.11400.71750.019*
H1B1.07660.16590.65820.019*
C20.8972 (3)0.12908 (6)0.68243 (17)0.0132 (3)
H20.90890.09880.72500.016*
C30.7325 (3)0.12458 (6)0.54317 (17)0.0131 (3)
H30.74360.15100.49900.016*
C40.5476 (3)0.13198 (6)0.52621 (17)0.0128 (3)
C50.3766 (3)0.12455 (6)0.40768 (18)0.0147 (3)
H50.37760.11490.34140.018*
C60.2054 (3)0.13134 (6)0.38721 (18)0.0148 (4)
C70.2001 (3)0.14504 (7)0.48506 (19)0.0167 (4)
H70.08530.14870.47170.020*
C80.3676 (3)0.15308 (7)0.60239 (19)0.0160 (4)
H80.36470.16230.66810.019*
C90.5425 (3)0.14763 (6)0.62462 (17)0.0129 (3)
C100.8645 (2)0.17057 (7)0.74190 (17)0.0125 (3)
H100.83120.19980.69080.015*
C111.0543 (2)0.17848 (7)0.87013 (17)0.0133 (3)
H111.06520.15640.93160.016*
C121.3304 (3)0.08391 (7)1.00181 (18)0.0159 (4)
C131.3157 (3)0.08395 (8)1.09972 (19)0.0217 (4)
H131.33140.11261.14160.026*
C141.2775 (3)0.04104 (8)1.1346 (2)0.0247 (4)
H141.26710.04131.19980.030*
C151.2546 (3)0.00222 (8)1.0741 (2)0.0203 (4)
C161.2670 (3)0.00143 (8)0.9752 (2)0.0255 (4)
H161.24950.03000.93260.031*
C171.3049 (3)0.04111 (8)0.9388 (2)0.0245 (4)
H171.31320.04090.87270.029*
C181.2250 (3)0.04916 (8)1.1177 (2)0.0256 (4)
H18A1.12290.04551.12320.038*
H18B1.33810.05751.19880.038*
H18C1.19520.07441.05890.038*
C190.7354 (2)0.07718 (7)0.48649 (17)0.0132 (3)
C200.7079 (3)0.03291 (7)0.52376 (19)0.0192 (4)
H200.68640.03240.58370.023*
C210.7122 (3)0.01038 (7)0.4725 (2)0.0227 (4)
H210.69360.03960.49820.027*
C220.7443 (3)0.00997 (8)0.3832 (2)0.0233 (4)
H220.74740.03890.34890.028*
C230.7717 (3)0.03359 (8)0.3452 (2)0.0234 (4)
H230.79410.03390.28570.028*
C240.7656 (3)0.07699 (7)0.39584 (18)0.0170 (4)
H240.78200.10620.36880.020*
C251.0855 (3)0.23088 (7)0.91806 (18)0.0163 (4)
H25A1.20550.23351.00080.020*
H25B1.08720.25270.86180.020*
C260.9258 (3)0.24439 (7)0.92394 (18)0.0149 (3)
C270.7728 (3)0.27179 (7)0.82900 (18)0.0171 (4)
H270.77860.28700.76930.021*
C280.6109 (3)0.27661 (7)0.82256 (19)0.0190 (4)
H280.50940.29480.75850.023*
C290.6011 (3)0.25435 (7)0.9116 (2)0.0209 (4)
H290.49210.25680.90620.025*
C300.7551 (3)0.22835 (7)1.00898 (19)0.0196 (4)
H300.75020.21391.06980.023*
C310.9168 (3)0.22381 (7)1.01571 (19)0.0182 (4)
H311.02010.20691.08210.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01373 (9)0.02465 (11)0.01461 (10)0.00055 (7)0.00604 (8)0.00078 (7)
S10.0108 (2)0.0186 (2)0.0157 (2)0.00166 (16)0.00767 (18)0.00202 (17)
O10.0163 (7)0.0261 (8)0.0243 (8)0.0000 (5)0.0145 (6)0.0017 (6)
O20.0145 (6)0.0236 (7)0.0181 (7)0.0042 (5)0.0074 (6)0.0054 (6)
N10.0106 (7)0.0202 (8)0.0121 (7)0.0001 (6)0.0071 (6)0.0012 (6)
N20.0133 (7)0.0189 (8)0.0134 (7)0.0022 (6)0.0098 (6)0.0043 (6)
C10.0136 (8)0.0216 (9)0.0150 (9)0.0010 (7)0.0095 (7)0.0023 (7)
C20.0143 (8)0.0140 (9)0.0122 (8)0.0008 (6)0.0085 (7)0.0008 (6)
C30.0147 (8)0.0136 (8)0.0133 (8)0.0001 (6)0.0097 (7)0.0004 (7)
C40.0145 (8)0.0118 (8)0.0159 (9)0.0000 (6)0.0113 (7)0.0002 (6)
C50.0180 (9)0.0128 (8)0.0132 (8)0.0001 (6)0.0094 (7)0.0003 (7)
C60.0152 (8)0.0131 (8)0.0126 (8)0.0002 (6)0.0065 (7)0.0005 (6)
C70.0152 (8)0.0165 (9)0.0210 (9)0.0013 (7)0.0123 (8)0.0004 (7)
C80.0167 (9)0.0178 (9)0.0181 (9)0.0007 (7)0.0129 (8)0.0022 (7)
C90.0142 (8)0.0121 (8)0.0138 (8)0.0003 (6)0.0092 (7)0.0002 (6)
C100.0143 (8)0.0138 (8)0.0113 (8)0.0010 (6)0.0088 (7)0.0008 (6)
C110.0129 (8)0.0164 (9)0.0123 (8)0.0004 (6)0.0084 (7)0.0010 (7)
C120.0129 (8)0.0179 (9)0.0140 (9)0.0008 (7)0.0066 (7)0.0003 (7)
C130.0288 (11)0.0217 (10)0.0161 (9)0.0002 (8)0.0144 (9)0.0021 (8)
C140.0318 (12)0.0256 (11)0.0208 (10)0.0016 (9)0.0180 (10)0.0017 (8)
C150.0152 (9)0.0222 (10)0.0218 (10)0.0010 (7)0.0103 (8)0.0029 (8)
C160.0346 (12)0.0185 (10)0.0288 (11)0.0033 (8)0.0220 (10)0.0048 (8)
C170.0315 (11)0.0240 (11)0.0242 (11)0.0025 (9)0.0201 (10)0.0032 (8)
C180.0242 (11)0.0233 (11)0.0283 (12)0.0004 (8)0.0153 (10)0.0046 (9)
C190.0105 (8)0.0179 (9)0.0106 (8)0.0005 (6)0.0060 (7)0.0007 (7)
C200.0238 (10)0.0192 (10)0.0204 (10)0.0022 (7)0.0164 (9)0.0014 (8)
C210.0259 (10)0.0152 (9)0.0295 (11)0.0014 (8)0.0182 (10)0.0009 (8)
C220.0249 (10)0.0191 (10)0.0266 (11)0.0016 (8)0.0159 (9)0.0063 (8)
C230.0271 (11)0.0273 (11)0.0236 (11)0.0020 (8)0.0194 (9)0.0063 (8)
C240.0166 (9)0.0203 (9)0.0162 (9)0.0031 (7)0.0111 (8)0.0020 (7)
C250.0152 (8)0.0173 (9)0.0169 (9)0.0033 (7)0.0100 (8)0.0030 (7)
C260.0173 (9)0.0142 (8)0.0144 (9)0.0031 (7)0.0101 (7)0.0045 (7)
C270.0233 (10)0.0145 (9)0.0168 (9)0.0010 (7)0.0139 (8)0.0014 (7)
C280.0202 (9)0.0174 (9)0.0186 (9)0.0019 (7)0.0114 (8)0.0012 (7)
C290.0226 (10)0.0196 (10)0.0261 (11)0.0015 (8)0.0176 (9)0.0043 (8)
C300.0289 (10)0.0174 (9)0.0199 (10)0.0032 (8)0.0186 (9)0.0027 (7)
C310.0216 (9)0.0176 (9)0.0152 (9)0.0004 (7)0.0111 (8)0.0007 (7)
Geometric parameters (Å, º) top
Br1—C61.9002 (19)C14—C151.385 (3)
S1—O21.4356 (15)C14—H140.93
S1—O11.4364 (15)C15—C161.392 (3)
S1—N11.6369 (16)C15—C181.507 (3)
S1—C121.765 (2)C16—C171.387 (3)
N1—C11.493 (2)C16—H160.93
N1—C111.500 (2)C17—H170.93
N2—C91.394 (2)C18—H18A0.96
N2—C101.451 (2)C18—H18B0.96
N2—H1N20.83 (3)C18—H18C0.96
C1—C21.520 (3)C19—C241.391 (3)
C1—H1A0.97C19—C201.395 (3)
C1—H1B0.97C20—C211.388 (3)
C2—C101.519 (2)C20—H200.93
C2—C31.527 (3)C21—C221.385 (3)
C2—H20.98C21—H210.93
C3—C191.519 (2)C22—C231.383 (3)
C3—C41.533 (2)C22—H220.93
C3—H30.98C23—C241.393 (3)
C4—C51.397 (3)C23—H230.93
C4—C91.411 (2)C24—H240.93
C5—C61.388 (3)C25—C261.516 (3)
C5—H50.93C25—H25A0.97
C6—C71.389 (3)C25—H25B0.97
C7—C81.380 (3)C26—C271.396 (3)
C7—H70.93C26—C311.398 (3)
C8—C91.405 (2)C27—C281.397 (3)
C8—H80.93C27—H270.93
C10—C111.529 (3)C28—C291.388 (3)
C10—H100.98C28—H280.93
C11—C251.537 (3)C29—C301.389 (3)
C11—H110.98C29—H290.93
C12—C171.387 (3)C30—C311.391 (3)
C12—C131.392 (3)C30—H300.93
C13—C141.388 (3)C31—H310.93
C13—H130.93
O2—S1—O1120.33 (9)C14—C13—C12119.79 (19)
O2—S1—N1106.05 (9)C14—C13—H13120.1
O1—S1—N1106.73 (8)C12—C13—H13120.1
O2—S1—C12106.91 (9)C15—C14—C13121.2 (2)
O1—S1—C12108.03 (9)C15—C14—H14119.4
N1—S1—C12108.31 (9)C13—C14—H14119.4
C1—N1—C11110.57 (14)C14—C15—C16118.21 (19)
C1—N1—S1118.47 (13)C14—C15—C18120.84 (19)
C11—N1—S1117.12 (12)C16—C15—C18120.90 (19)
C9—N2—C10113.13 (15)C17—C16—C15121.5 (2)
C9—N2—H1N2116.8 (19)C17—C16—H16119.3
C10—N2—H1N2114.8 (18)C15—C16—H16119.3
N1—C1—C2103.47 (14)C12—C17—C16119.5 (2)
N1—C1—H1A111.1C12—C17—H17120.3
C2—C1—H1A111.1C16—C17—H17120.3
N1—C1—H1B111.1C15—C18—H18A109.5
C2—C1—H1B111.1C15—C18—H18B109.5
H1A—C1—H1B109.0H18A—C18—H18B109.5
C10—C2—C1101.27 (14)C15—C18—H18C109.5
C10—C2—C3110.67 (15)H18A—C18—H18C109.5
C1—C2—C3117.55 (15)H18B—C18—H18C109.5
C10—C2—H2109.0C24—C19—C20118.40 (17)
C1—C2—H2109.0C24—C19—C3120.53 (17)
C3—C2—H2109.0C20—C19—C3121.07 (16)
C19—C3—C2112.66 (15)C21—C20—C19120.90 (18)
C19—C3—C4112.38 (15)C21—C20—H20119.6
C2—C3—C4108.85 (15)C19—C20—H20119.6
C19—C3—H3107.6C22—C21—C20119.98 (19)
C2—C3—H3107.6C22—C21—H21120.0
C4—C3—H3107.6C20—C21—H21120.0
C5—C4—C9118.36 (17)C23—C22—C21119.88 (19)
C5—C4—C3118.95 (16)C23—C22—H22120.1
C9—C4—C3122.66 (16)C21—C22—H22120.1
C6—C5—C4121.12 (17)C22—C23—C24120.05 (19)
C6—C5—H5119.4C22—C23—H23120.0
C4—C5—H5119.4C24—C23—H23120.0
C5—C6—C7120.60 (18)C19—C24—C23120.78 (19)
C5—C6—Br1119.63 (14)C19—C24—H24119.6
C7—C6—Br1119.78 (14)C23—C24—H24119.6
C8—C7—C6119.03 (17)C26—C25—C11108.30 (15)
C8—C7—H7120.5C26—C25—H25A110.0
C6—C7—H7120.5C11—C25—H25A110.0
C7—C8—C9121.38 (17)C26—C25—H25B110.0
C7—C8—H8119.3C11—C25—H25B110.0
C9—C8—H8119.3H25A—C25—H25B108.4
N2—C9—C8119.53 (16)C27—C26—C31118.40 (17)
N2—C9—C4121.04 (16)C27—C26—C25121.08 (17)
C8—C9—C4119.44 (17)C31—C26—C25119.92 (17)
N2—C10—C2108.05 (15)C26—C27—C28120.74 (18)
N2—C10—C11115.96 (15)C26—C27—H27119.6
C2—C10—C11105.22 (14)C28—C27—H27119.6
N2—C10—H10109.1C29—C28—C27120.12 (19)
C2—C10—H10109.1C29—C28—H28119.9
C11—C10—H10109.1C27—C28—H28119.9
N1—C11—C10101.94 (13)C28—C29—C30119.60 (18)
N1—C11—C25112.56 (15)C28—C29—H29120.2
C10—C11—C25113.59 (15)C30—C29—H29120.2
N1—C11—H11109.5C29—C30—C31120.21 (18)
C10—C11—H11109.5C29—C30—H30119.9
C25—C11—H11109.5C31—C30—H30119.9
C17—C12—C13119.84 (19)C30—C31—C26120.83 (19)
C17—C12—S1120.14 (15)C30—C31—H31119.6
C13—C12—S1120.00 (15)C26—C31—H31119.6
O2—S1—N1—C1170.23 (13)C2—C10—C11—N130.32 (17)
O1—S1—N1—C140.79 (15)N2—C10—C11—C2589.02 (19)
C12—S1—N1—C175.31 (15)C2—C10—C11—C25151.67 (15)
O2—S1—N1—C1153.17 (15)O2—S1—C12—C17159.73 (17)
O1—S1—N1—C11177.39 (13)O1—S1—C12—C1728.88 (19)
C12—S1—N1—C1161.30 (15)N1—S1—C12—C1786.37 (18)
C11—N1—C1—C218.81 (19)O2—S1—C12—C1318.59 (18)
S1—N1—C1—C2120.42 (14)O1—S1—C12—C13149.44 (16)
N1—C1—C2—C1036.53 (17)N1—S1—C12—C1395.31 (17)
N1—C1—C2—C3157.19 (15)C17—C12—C13—C140.7 (3)
C10—C2—C3—C19166.61 (15)S1—C12—C13—C14177.66 (16)
C1—C2—C3—C1977.8 (2)C12—C13—C14—C150.4 (3)
C10—C2—C3—C441.27 (19)C13—C14—C15—C161.3 (3)
C1—C2—C3—C4156.90 (15)C13—C14—C15—C18176.2 (2)
C19—C3—C4—C548.0 (2)C14—C15—C16—C171.2 (3)
C2—C3—C4—C5173.54 (16)C18—C15—C16—C17176.3 (2)
C19—C3—C4—C9134.17 (17)C13—C12—C17—C160.7 (3)
C2—C3—C4—C98.7 (2)S1—C12—C17—C16177.61 (17)
C9—C4—C5—C61.4 (3)C15—C16—C17—C120.2 (3)
C3—C4—C5—C6179.24 (16)C2—C3—C19—C24113.59 (19)
C4—C5—C6—C71.0 (3)C4—C3—C19—C24123.01 (18)
C4—C5—C6—Br1179.26 (13)C2—C3—C19—C2066.4 (2)
C5—C6—C7—C81.7 (3)C4—C3—C19—C2057.0 (2)
Br1—C6—C7—C8178.53 (14)C24—C19—C20—C210.6 (3)
C6—C7—C8—C90.1 (3)C3—C19—C20—C21179.42 (18)
C10—N2—C9—C8155.20 (17)C19—C20—C21—C220.0 (3)
C10—N2—C9—C425.2 (2)C20—C21—C22—C230.1 (3)
C7—C8—C9—N2178.18 (18)C21—C22—C23—C240.5 (3)
C7—C8—C9—C42.2 (3)C20—C19—C24—C231.1 (3)
C5—C4—C9—N2177.51 (17)C3—C19—C24—C23178.86 (18)
C3—C4—C9—N20.3 (3)C22—C23—C24—C191.1 (3)
C5—C4—C9—C82.9 (3)N1—C11—C25—C26172.70 (15)
C3—C4—C9—C8179.28 (16)C10—C11—C25—C2657.5 (2)
C9—N2—C10—C258.2 (2)C11—C25—C26—C2799.7 (2)
C9—N2—C10—C11175.99 (15)C11—C25—C26—C3171.3 (2)
C1—C2—C10—N2166.58 (15)C31—C26—C27—C283.0 (3)
C3—C2—C10—N268.01 (18)C25—C26—C27—C28168.13 (18)
C1—C2—C10—C1142.12 (17)C26—C27—C28—C290.5 (3)
C3—C2—C10—C11167.53 (14)C27—C28—C29—C301.7 (3)
C1—N1—C11—C106.89 (19)C28—C29—C30—C311.3 (3)
S1—N1—C11—C10146.72 (12)C29—C30—C31—C261.2 (3)
C1—N1—C11—C25128.95 (16)C27—C26—C31—C303.3 (3)
S1—N1—C11—C2591.22 (17)C25—C26—C31—C30167.86 (18)
N2—C10—C11—N1149.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.532.917 (3)104
C13—H13···O20.932.562.914 (3)103
C28—H28···O2i0.932.573.207 (3)126
N2—H1N2···Cg30.83 (3)2.53 (3)3.289 (2)152 (3)
C3—H3···Cg3ii0.982.983.924 (2)162
C18—H18A···Cg2iii0.962.943.737 (3)141
C21—H21···Cg1iv0.932.803.676 (2)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y, z+2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC31H29BrN2O2S
Mr573.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8992 (2), 27.5824 (5), 13.3668 (2)
β (°) 127.190 (1)
V3)2613.78 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.39 × 0.28 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.641, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
43436, 7624, 6348
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.06
No. of reflections7624
No. of parameters339
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···O2i0.932.573.207 (3)126
N2—H1N2···Cg30.83 (3)2.53 (3)3.289 (2)152 (3)
C3—H3···Cg3ii0.982.983.924 (2)162
C18—H18A···Cg2iii0.962.943.737 (3)141
C21—H21···Cg1iv0.932.803.676 (2)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y, z+2; (iv) x+1, y, z+1.
 

Footnotes

Working at: Department of Physics, R. M. K. Engineering Collge, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009a). Acta Cryst. E65, o2923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009b). Acta Cryst. E65, o2973–o2974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFerlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2001). Bioorg. Med. Chem. 9, 1843–1848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerlin, M. G., Marzano, C., Dalla Via, L., Chilin, A., Zagotto, G., Guiotto, A. & Moro, S. (2005). Bioorg. Med. Chem. 13, 4733–4739.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetobo, S., Mish, M., Jin, H., Jabri, S., Lansdown, R., Chen, X., Tsiang, M., Wright, M. & Kim, C. U. (2009). Bioorg. Med. Chem. Lett. 19, 1187–1190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, H., Kim, D.-I., Sarkaria, J. N., Cho, Y.-S., Abraham, R. T. & Zalkow, L. H. (2002). Bioorg. Med. Chem. 10, 167–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRyu, C. K., Lee, J. Y., Jeong, S. H. & Nho, J. H. (2009). Bioorg. Med. Chem. Lett. 19, 146–148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuji, K., Tsubouchi, H. & Ishikawa, H. (1995). Chem. Pharm. Bull. (Tokyo), 43, 1678–1682.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3001-o3002
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds