organic compounds
3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C10H9NOS2, the 1,3-thiazolidine and 2-methylphenyl rings are oriented at a dihedral angle of 84.44 (9)°. In the crystal, an unusual bifurcated C—H⋯(O,π) interaction leads to zigzag chains of molecules.
Related literature
For background to rhodanine derivatives, see: Cutshall et al. (2005). For related structures, see: Shahwar et al. (2009a,b,c).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809045814/hb5205sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809045814/hb5205Isup2.hkl
The title compound was prepared by a three step reaction procedure. In the first step ortho toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.
In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned dark yellow.
In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get the dark yellow needles of (I).
The coordinates of H2 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)..
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C10H9NOS2 | F(000) = 928 |
Mr = 223.30 | Dx = 1.417 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2661 reflections |
a = 23.690 (5) Å | θ = 2.8–28.7° |
b = 7.1401 (17) Å | µ = 0.47 mm−1 |
c = 14.628 (3) Å | T = 296 K |
β = 122.215 (6)° | Cut needle, dark yellow |
V = 2093.5 (8) Å3 | 0.34 × 0.16 × 0.14 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | 2661 independent reflections |
Radiation source: fine-focus sealed tube | 1436 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
ω scans | h = −31→30 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −9→5 |
Tmin = 0.914, Tmax = 0.934 | l = −17→19 |
10878 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.189 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0949P)2 + 0.6816P] where P = (Fo2 + 2Fc2)/3 |
2661 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C10H9NOS2 | V = 2093.5 (8) Å3 |
Mr = 223.30 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.690 (5) Å | µ = 0.47 mm−1 |
b = 7.1401 (17) Å | T = 296 K |
c = 14.628 (3) Å | 0.34 × 0.16 × 0.14 mm |
β = 122.215 (6)° |
Bruker Kappa APEXII CCD diffractometer | 2661 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1436 reflections with I > 2σ(I) |
Tmin = 0.914, Tmax = 0.934 | Rint = 0.061 |
10878 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.189 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.63 e Å−3 |
2661 reflections | Δρmin = −0.31 e Å−3 |
128 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.21396 (5) | −0.00494 (13) | −0.00417 (7) | 0.0612 (3) | |
S2 | 0.07182 (5) | 0.09169 (18) | −0.10373 (8) | 0.0903 (4) | |
O1 | 0.26644 (11) | 0.2834 (4) | 0.24779 (19) | 0.0733 (9) | |
N1 | 0.17183 (11) | 0.1968 (3) | 0.09176 (18) | 0.0475 (8) | |
C1 | 0.12842 (14) | 0.2941 (4) | 0.1167 (2) | 0.0499 (10) | |
C2 | 0.11018 (15) | 0.4752 (5) | 0.0824 (2) | 0.0527 (10) | |
C3 | 0.06977 (17) | 0.5655 (6) | 0.1131 (3) | 0.0672 (12) | |
C4 | 0.05067 (19) | 0.4719 (7) | 0.1737 (3) | 0.0768 (16) | |
C5 | 0.0691 (2) | 0.2946 (7) | 0.2068 (3) | 0.0779 (16) | |
C6 | 0.10811 (17) | 0.2011 (6) | 0.1777 (3) | 0.0660 (14) | |
C7 | 0.23984 (15) | 0.1956 (5) | 0.1655 (2) | 0.0509 (11) | |
C8 | 0.27516 (16) | 0.0721 (5) | 0.1295 (3) | 0.0555 (11) | |
C9 | 0.14858 (16) | 0.1022 (4) | −0.0033 (3) | 0.0537 (11) | |
C10 | 0.1303 (2) | 0.5694 (6) | 0.0175 (3) | 0.0726 (14) | |
H3 | 0.05615 | 0.68853 | 0.09201 | 0.0808* | |
H4 | 0.02385 | 0.53341 | 0.19283 | 0.0918* | |
H5 | 0.05568 | 0.23555 | 0.24881 | 0.0933* | |
H6 | 0.12066 | 0.07745 | 0.19869 | 0.0793* | |
H8A | 0.29480 | −0.03430 | 0.17767 | 0.0668* | |
H8B | 0.31039 | 0.14084 | 0.12918 | 0.0668* | |
H10A | 0.11483 | 0.50009 | −0.04790 | 0.1090* | |
H10B | 0.17806 | 0.57808 | 0.05699 | 0.1090* | |
H10C | 0.11140 | 0.69291 | 0.00017 | 0.1090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0782 (6) | 0.0598 (6) | 0.0604 (5) | 0.0158 (4) | 0.0468 (5) | 0.0023 (4) |
S2 | 0.0723 (7) | 0.0974 (9) | 0.0678 (7) | 0.0173 (6) | 0.0150 (5) | −0.0333 (6) |
O1 | 0.0542 (14) | 0.097 (2) | 0.0562 (14) | 0.0095 (13) | 0.0211 (12) | −0.0126 (14) |
N1 | 0.0499 (14) | 0.0541 (16) | 0.0422 (13) | 0.0081 (11) | 0.0271 (12) | −0.0011 (11) |
C1 | 0.0464 (16) | 0.0565 (19) | 0.0440 (16) | 0.0030 (13) | 0.0222 (14) | −0.0077 (14) |
C2 | 0.0533 (18) | 0.064 (2) | 0.0423 (16) | 0.0056 (14) | 0.0265 (15) | −0.0023 (14) |
C3 | 0.060 (2) | 0.075 (2) | 0.057 (2) | 0.0178 (17) | 0.0247 (17) | −0.0056 (18) |
C4 | 0.057 (2) | 0.121 (4) | 0.061 (2) | 0.002 (2) | 0.0373 (19) | −0.013 (2) |
C5 | 0.076 (3) | 0.103 (3) | 0.074 (2) | −0.016 (2) | 0.053 (2) | −0.012 (2) |
C6 | 0.066 (2) | 0.086 (3) | 0.0577 (19) | −0.0094 (18) | 0.0409 (18) | −0.0094 (18) |
C7 | 0.0538 (18) | 0.059 (2) | 0.0442 (17) | 0.0084 (15) | 0.0291 (15) | 0.0084 (15) |
C8 | 0.0607 (19) | 0.063 (2) | 0.0565 (18) | 0.0147 (15) | 0.0404 (17) | 0.0164 (16) |
C9 | 0.069 (2) | 0.0464 (18) | 0.0475 (17) | 0.0080 (14) | 0.0323 (16) | −0.0041 (14) |
C10 | 0.089 (3) | 0.062 (2) | 0.079 (2) | 0.0073 (19) | 0.053 (2) | 0.008 (2) |
S1—C8 | 1.790 (4) | C4—C5 | 1.343 (7) |
S1—C9 | 1.734 (4) | C5—C6 | 1.379 (7) |
S2—C9 | 1.619 (4) | C7—C8 | 1.492 (6) |
O1—C7 | 1.196 (4) | C3—H3 | 0.9300 |
N1—C1 | 1.440 (4) | C4—H4 | 0.9300 |
N1—C7 | 1.381 (4) | C5—H5 | 0.9300 |
N1—C9 | 1.370 (4) | C6—H6 | 0.9300 |
C1—C2 | 1.371 (5) | C8—H8A | 0.9700 |
C1—C6 | 1.388 (5) | C8—H8B | 0.9700 |
C2—C3 | 1.412 (6) | C10—H10A | 0.9600 |
C2—C10 | 1.436 (6) | C10—H10B | 0.9600 |
C3—C4 | 1.366 (6) | C10—H10C | 0.9600 |
C8—S1—C9 | 93.61 (19) | S2—C9—N1 | 126.4 (3) |
C1—N1—C7 | 119.9 (2) | C2—C3—H3 | 120.00 |
C1—N1—C9 | 122.7 (3) | C4—C3—H3 | 120.00 |
C7—N1—C9 | 117.4 (3) | C3—C4—H4 | 119.00 |
N1—C1—C2 | 119.4 (3) | C5—C4—H4 | 119.00 |
N1—C1—C6 | 118.1 (3) | C4—C5—H5 | 120.00 |
C2—C1—C6 | 122.5 (3) | C6—C5—H5 | 120.00 |
C1—C2—C3 | 116.7 (3) | C1—C6—H6 | 120.00 |
C1—C2—C10 | 122.2 (4) | C5—C6—H6 | 120.00 |
C3—C2—C10 | 121.1 (4) | S1—C8—H8A | 110.00 |
C2—C3—C4 | 119.9 (4) | S1—C8—H8B | 110.00 |
C3—C4—C5 | 122.6 (5) | C7—C8—H8A | 110.00 |
C4—C5—C6 | 119.2 (4) | C7—C8—H8B | 110.00 |
C1—C6—C5 | 119.1 (4) | H8A—C8—H8B | 109.00 |
O1—C7—N1 | 123.5 (3) | C2—C10—H10A | 109.00 |
O1—C7—C8 | 124.9 (3) | C2—C10—H10B | 109.00 |
N1—C7—C8 | 111.6 (3) | C2—C10—H10C | 109.00 |
S1—C8—C7 | 106.7 (3) | H10A—C10—H10B | 110.00 |
S1—C9—S2 | 123.3 (2) | H10A—C10—H10C | 110.00 |
S1—C9—N1 | 110.4 (3) | H10B—C10—H10C | 110.00 |
C9—S1—C8—C7 | −4.5 (3) | C7—N1—C9—S2 | −177.0 (3) |
C8—S1—C9—S2 | −179.4 (2) | N1—C1—C2—C3 | −177.5 (3) |
C8—S1—C9—N1 | 1.8 (3) | N1—C1—C2—C10 | 3.1 (4) |
C7—N1—C1—C2 | 94.3 (3) | C6—C1—C2—C3 | 0.6 (5) |
C7—N1—C1—C6 | −84.0 (4) | C6—C1—C2—C10 | −178.8 (3) |
C9—N1—C1—C2 | −86.2 (4) | N1—C1—C6—C5 | 177.0 (3) |
C9—N1—C1—C6 | 95.6 (4) | C2—C1—C6—C5 | −1.2 (5) |
C1—N1—C7—O1 | −5.7 (5) | C1—C2—C3—C4 | −0.2 (5) |
C1—N1—C7—C8 | 174.3 (3) | C10—C2—C3—C4 | 179.2 (4) |
C9—N1—C7—O1 | 174.7 (3) | C2—C3—C4—C5 | 0.4 (6) |
C9—N1—C7—C8 | −5.4 (4) | C3—C4—C5—C6 | −0.9 (7) |
C1—N1—C9—S1 | −177.9 (2) | C4—C5—C6—C1 | 1.3 (6) |
C1—N1—C9—S2 | 3.4 (4) | O1—C7—C8—S1 | −173.9 (3) |
C7—N1—C9—S1 | 1.8 (3) | N1—C7—C8—S1 | 6.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.97 | 2.58 | 3.214 (5) | 123 |
C8—H8A···Cg2i | 0.97 | 2.65 | 3.420 (4) | 137 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H9NOS2 |
Mr | 223.30 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 23.690 (5), 7.1401 (17), 14.628 (3) |
β (°) | 122.215 (6) |
V (Å3) | 2093.5 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.47 |
Crystal size (mm) | 0.34 × 0.16 × 0.14 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.914, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10878, 2661, 1436 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.189, 1.02 |
No. of reflections | 2661 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.31 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.97 | 2.58 | 3.214 (5) | 123 |
C8—H8A···Cg2i | 0.97 | 2.65 | 3.420 (4) | 137 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
Durre Shahwar is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.
References
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374–3379. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. Web of Science CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodanine-based molecules have been popular as small molecule inhibitors of numerous targets such as HCV NS3 protease, aldose reductase, beta-lactamase, UDP-N-acetylmuramate/L-alanine ligase, antidiabetic agents, cathepsin D, and histidine decarboxylase (Cutshall et al., 2005). We herein, report the crystal structure and preparation of the title compound (I, Fig. 1) which is one of the rhodanine derivatives from the series of compounds prepared by our group for beta-lactamase and xanthine oxidase enzyme inhibition studies.
The crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl- 2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b) and (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) have been reported which are the rhodanine derivatives. The crystal stucture of (II) contains (I) as a group.
In (I), the 2-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0051 and 0.0387 Å respectively, from their mean square planes. The dihedral angle between A/B is 84.44 (9)°. The molecules are stabilized in the form of zig–zag infinte one dimensional polymeric chains due to intermolecular H-bondings (Table 1, Fig. 2). The C–H···π interaction (Table 1) also play a role in stabilizing the molecules.