organic compounds
3-(3-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C10H9NOS2, the dihedral angle between the rhodanine (2-thioxo-1,3-thiazolidin-4-one) and 3-methylphenyl rings is 83.30 (3)°. The H atoms of the methyl group are disordered over two set of sites with an occupancy ratio of 0.58 (3):0.42 (3). In the crystal, the molecules interact by way of C—H⋯π and C=O⋯π interactions.
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809045863/hb5208sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809045863/hb5208Isup2.hkl
The title compound was prepared by a three step reaction procedure. In the first step meta toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.
In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned light yellow.
In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get light yellow prisms of (I).
The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C10H9NOS2 | F(000) = 464 |
Mr = 223.3 | Dx = 1.389 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2666 reflections |
a = 8.0775 (3) Å | θ = 2.6–28.3° |
b = 6.4058 (2) Å | µ = 0.46 mm−1 |
c = 21.4715 (7) Å | T = 296 K |
β = 106.068 (2)° | Prism, light yellow |
V = 1067.59 (6) Å3 | 0.32 × 0.24 × 0.22 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 2666 independent reflections |
Radiation source: fine-focus sealed tube | 2116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −8→8 |
Tmin = 0.849, Tmax = 0.897 | l = −28→28 |
11841 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2635P] where P = (Fo2 + 2Fc2)/3 |
2666 reflections | (Δ/σ)max < 0.001 |
129 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C10H9NOS2 | V = 1067.59 (6) Å3 |
Mr = 223.3 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0775 (3) Å | µ = 0.46 mm−1 |
b = 6.4058 (2) Å | T = 296 K |
c = 21.4715 (7) Å | 0.32 × 0.24 × 0.22 mm |
β = 106.068 (2)° |
Bruker Kappa APEXII CCD diffractometer | 2666 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2116 reflections with I > 2σ(I) |
Tmin = 0.849, Tmax = 0.897 | Rint = 0.026 |
11841 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.27 e Å−3 |
2666 reflections | Δρmin = −0.22 e Å−3 |
129 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.90452 (5) | 0.42703 (7) | 0.26996 (2) | 0.0484 (1) | |
S2 | 0.85641 (6) | 0.38555 (7) | 0.12935 (2) | 0.0511 (2) | |
O1 | 0.54228 (16) | 0.04248 (19) | 0.26950 (6) | 0.0537 (4) | |
N1 | 0.67528 (14) | 0.18699 (18) | 0.19889 (5) | 0.0324 (3) | |
C1 | 0.56186 (18) | 0.0913 (2) | 0.14230 (7) | 0.0337 (4) | |
C2 | 0.5937 (2) | −0.1103 (2) | 0.12588 (8) | 0.0419 (5) | |
C3 | 0.4818 (2) | −0.1972 (3) | 0.07148 (8) | 0.0501 (6) | |
C4 | 0.3436 (2) | −0.0858 (3) | 0.03533 (8) | 0.0518 (6) | |
C5 | 0.3103 (2) | 0.1156 (3) | 0.05186 (7) | 0.0461 (5) | |
C6 | 0.42217 (18) | 0.2036 (3) | 0.10687 (7) | 0.0391 (5) | |
C7 | 0.65129 (19) | 0.1553 (2) | 0.26005 (7) | 0.0363 (4) | |
C8 | 0.77847 (19) | 0.2774 (3) | 0.31088 (7) | 0.0410 (5) | |
C9 | 0.80207 (17) | 0.3243 (2) | 0.19488 (7) | 0.0342 (4) | |
C10 | 0.1604 (2) | 0.2403 (4) | 0.01220 (10) | 0.0730 (8) | |
H2 | 0.68758 | −0.18517 | 0.15069 | 0.0502* | |
H3 | 0.50036 | −0.33254 | 0.05925 | 0.0602* | |
H4 | 0.27025 | −0.14709 | −0.00126 | 0.0621* | |
H6 | 0.40257 | 0.33792 | 0.11964 | 0.0469* | |
H8A | 0.85188 | 0.18403 | 0.34219 | 0.0492* | |
H8B | 0.71912 | 0.36922 | 0.33352 | 0.0492* | |
H10A | 0.06610 | 0.23026 | 0.03116 | 0.1095* | 0.58 (3) |
H10B | 0.12550 | 0.18649 | −0.03121 | 0.1095* | 0.58 (3) |
H10C | 0.19388 | 0.38382 | 0.01132 | 0.1095* | 0.58 (3) |
H10D | 0.19424 | 0.31376 | −0.02127 | 0.1095* | 0.42 (3) |
H10E | 0.12470 | 0.33875 | 0.03963 | 0.1095* | 0.42 (3) |
H10F | 0.06653 | 0.14807 | −0.00708 | 0.1095* | 0.42 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0426 (2) | 0.0565 (3) | 0.0445 (2) | −0.0166 (2) | 0.0092 (2) | −0.0128 (2) |
S2 | 0.0545 (3) | 0.0578 (3) | 0.0449 (2) | −0.0180 (2) | 0.0202 (2) | −0.0016 (2) |
O1 | 0.0636 (8) | 0.0544 (7) | 0.0476 (7) | −0.0196 (6) | 0.0227 (6) | 0.0006 (5) |
N1 | 0.0328 (6) | 0.0310 (5) | 0.0331 (6) | −0.0024 (5) | 0.0088 (5) | −0.0023 (5) |
C1 | 0.0341 (7) | 0.0342 (7) | 0.0343 (7) | −0.0077 (6) | 0.0120 (6) | −0.0027 (6) |
C2 | 0.0433 (8) | 0.0364 (8) | 0.0482 (9) | −0.0029 (6) | 0.0166 (7) | −0.0041 (7) |
C3 | 0.0592 (10) | 0.0442 (9) | 0.0529 (10) | −0.0167 (8) | 0.0253 (8) | −0.0169 (8) |
C4 | 0.0521 (10) | 0.0673 (11) | 0.0375 (8) | −0.0261 (9) | 0.0150 (7) | −0.0131 (8) |
C5 | 0.0379 (8) | 0.0627 (10) | 0.0371 (8) | −0.0096 (7) | 0.0094 (6) | 0.0066 (7) |
C6 | 0.0385 (8) | 0.0399 (8) | 0.0395 (8) | −0.0039 (6) | 0.0119 (6) | 0.0011 (6) |
C7 | 0.0395 (8) | 0.0343 (7) | 0.0359 (7) | 0.0028 (6) | 0.0118 (6) | 0.0018 (6) |
C8 | 0.0388 (8) | 0.0481 (9) | 0.0351 (7) | 0.0015 (7) | 0.0087 (6) | −0.0026 (7) |
C9 | 0.0314 (7) | 0.0319 (7) | 0.0389 (7) | −0.0006 (5) | 0.0091 (6) | −0.0025 (6) |
C10 | 0.0505 (11) | 0.0965 (17) | 0.0611 (12) | −0.0013 (11) | −0.0027 (9) | 0.0161 (11) |
S1—C8 | 1.7952 (17) | C7—C8 | 1.496 (2) |
S1—C9 | 1.7258 (15) | C2—H2 | 0.9300 |
S2—C9 | 1.6335 (15) | C3—H3 | 0.9300 |
O1—C7 | 1.199 (2) | C4—H4 | 0.9300 |
N1—C1 | 1.4406 (18) | C6—H6 | 0.9300 |
N1—C7 | 1.3943 (18) | C8—H8A | 0.9700 |
N1—C9 | 1.3707 (18) | C8—H8B | 0.9700 |
C1—C2 | 1.3814 (19) | C10—H10A | 0.9600 |
C1—C6 | 1.376 (2) | C10—H10B | 0.9600 |
C2—C3 | 1.381 (2) | C10—H10C | 0.9600 |
C3—C4 | 1.371 (2) | C10—H10D | 0.9600 |
C4—C5 | 1.384 (3) | C10—H10E | 0.9600 |
C5—C6 | 1.392 (2) | C10—H10F | 0.9600 |
C5—C10 | 1.503 (3) | ||
C8—S1—C9 | 93.63 (7) | C2—C3—H3 | 120.00 |
C1—N1—C7 | 120.71 (12) | C4—C3—H3 | 120.00 |
C1—N1—C9 | 122.13 (11) | C3—C4—H4 | 119.00 |
C7—N1—C9 | 116.98 (11) | C5—C4—H4 | 119.00 |
N1—C1—C2 | 119.55 (13) | C1—C6—H6 | 120.00 |
N1—C1—C6 | 118.46 (13) | C5—C6—H6 | 120.00 |
C2—C1—C6 | 121.98 (14) | S1—C8—H8A | 110.00 |
C1—C2—C3 | 117.92 (15) | S1—C8—H8B | 110.00 |
C2—C3—C4 | 120.60 (17) | C7—C8—H8A | 110.00 |
C3—C4—C5 | 121.72 (16) | C7—C8—H8B | 110.00 |
C4—C5—C6 | 117.93 (16) | H8A—C8—H8B | 109.00 |
C4—C5—C10 | 122.24 (16) | C5—C10—H10A | 109.00 |
C6—C5—C10 | 119.83 (17) | C5—C10—H10B | 109.00 |
C1—C6—C5 | 119.84 (16) | C5—C10—H10C | 109.00 |
O1—C7—N1 | 123.17 (14) | C5—C10—H10D | 109.00 |
O1—C7—C8 | 125.44 (14) | C5—C10—H10E | 109.00 |
N1—C7—C8 | 111.39 (12) | C5—C10—H10F | 109.00 |
S1—C8—C7 | 106.86 (10) | H10A—C10—H10B | 109.00 |
S1—C9—S2 | 122.64 (8) | H10A—C10—H10C | 109.00 |
S1—C9—N1 | 111.07 (10) | H10B—C10—H10C | 109.00 |
S2—C9—N1 | 126.29 (11) | H10D—C10—H10E | 109.00 |
C1—C2—H2 | 121.00 | H10D—C10—H10F | 109.00 |
C3—C2—H2 | 121.00 | H10E—C10—H10F | 109.00 |
C9—S1—C8—C7 | −2.42 (12) | C7—N1—C9—S2 | 179.24 (11) |
C8—S1—C9—S2 | −177.72 (10) | N1—C1—C2—C3 | 179.72 (14) |
C8—S1—C9—N1 | 1.42 (11) | C6—C1—C2—C3 | 1.1 (2) |
C7—N1—C1—C2 | −85.14 (18) | N1—C1—C6—C5 | 179.89 (14) |
C7—N1—C1—C6 | 93.56 (16) | C2—C1—C6—C5 | −1.5 (2) |
C9—N1—C1—C2 | 99.88 (17) | C1—C2—C3—C4 | −0.2 (2) |
C9—N1—C1—C6 | −81.42 (18) | C2—C3—C4—C5 | −0.4 (3) |
C1—N1—C7—O1 | 3.2 (2) | C3—C4—C5—C6 | 0.0 (3) |
C1—N1—C7—C8 | −177.29 (12) | C3—C4—C5—C10 | 179.27 (17) |
C9—N1—C7—O1 | 178.41 (14) | C4—C5—C6—C1 | 0.9 (2) |
C9—N1—C7—C8 | −2.06 (18) | C10—C5—C6—C1 | −178.41 (15) |
C1—N1—C9—S1 | 175.30 (10) | O1—C7—C8—S1 | −177.61 (13) |
C1—N1—C9—S2 | −5.60 (19) | N1—C7—C8—S1 | 2.88 (16) |
C7—N1—C9—S1 | 0.14 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cg2i | 0.97 | 2.59 | 3.5219 (17) | 162 |
C7—O1···Cg1i | 1.20 (1) | 2.94 (1) | 4.1070 (16) | 164 (1) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H9NOS2 |
Mr | 223.3 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.0775 (3), 6.4058 (2), 21.4715 (7) |
β (°) | 106.068 (2) |
V (Å3) | 1067.59 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.32 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.849, 0.897 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11841, 2666, 2116 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.087, 1.03 |
No. of reflections | 2666 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.22 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cg2i | 0.97 | 2.59 | 3.5219 (17) | 162 |
C7—O1···Cg1i | 1.199 (2) | 2.9413 (14) | 4.1070 (16) | 163.94 (11) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.
References
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903. Web of Science CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009e). Acta Cryst. E65, o3015. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have reported the synthesis and crystal structures of various rhodanine derivatives such as (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c), (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d) and (VI) 3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009e). The purpose of synthesis of differet rhodanine derivatives is to study the biological activities. The title compound (I, Fig. 1) is being reported in this context.
In (I), the 3-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0068 and 0.0171 Å respectively, from their mean square planes. The dihedral angle between A/B is 83.30 (3)°. The H-atoms of the methyl moiety are disordered over two set of sites with occupancy ratio of 0.58 (3):0.42 (3) in the monomers. There exist C–H···π and C==O···π interactions (Table 1) which stabilize the molecules.