organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Methyl­phen­yl)-2-thioxo-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 November 2009; accepted 1 November 2009; online 7 November 2009)

In the title compound, C10H9NOS2, the dihedral angle between the rhodanine (2-thioxo-1,3-thia­zolidin-4-one) and 3-methyl­phenyl rings is 83.30 (3)°. The H atoms of the methyl group are disordered over two set of sites with an occupancy ratio of 0.58 (3):0.42 (3). In the crystal, the mol­ecules inter­act by way of C—H⋯π and C=O⋯π inter­actions.

Related literature

For related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.],b[Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.],c[Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.],d[Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014.],e[Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009e). Acta Cryst. E65, o3015.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NOS2

  • Mr = 223.3

  • Monoclinic, P 21 /c

  • a = 8.0775 (3) Å

  • b = 6.4058 (2) Å

  • c = 21.4715 (7) Å

  • β = 106.068 (2)°

  • V = 1067.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.897

  • 11841 measured reflections

  • 2666 independent reflections

  • 2116 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.03

  • 2666 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg2i 0.97 2.59 3.5219 (17) 162
C7—O1⋯Cg1i 1.20 (1) 2.94 (1) 4.1070 (16) 164 (1)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the S1/C8/C7/N1/C9 and C1—C6 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the synthesis and crystal structures of various rhodanine derivatives such as (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c), (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d) and (VI) 3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009e). The purpose of synthesis of differet rhodanine derivatives is to study the biological activities. The title compound (I, Fig. 1) is being reported in this context.

In (I), the 3-methylphenyl A (C1–C6/C10) and the rhodanine group B (N1/C7/C8/S1/C9/O1/S2) are planar with maximum r. m. s. deviations of 0.0068 and 0.0171 Å respectively, from their mean square planes. The dihedral angle between A/B is 83.30 (3)°. The H-atoms of the methyl moiety are disordered over two set of sites with occupancy ratio of 0.58 (3):0.42 (3) in the monomers. There exist C–H···π and C==O···π interactions (Table 1) which stabilize the molecules.

Related literature top

For related structures, see: Shahwar et al. (2009a,b,c,d,e). Cg1 and Cg2 are the centroids of the S1/C8/C7/N1/C9 and C1—C6 rings, respectively.

Experimental top

The title compound was prepared by a three step reaction procedure. In the first step meta toluidine aniline (10.7 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned light yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get light yellow prisms of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
3-(3-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 464
Mr = 223.3Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2666 reflections
a = 8.0775 (3) Åθ = 2.6–28.3°
b = 6.4058 (2) ŵ = 0.46 mm1
c = 21.4715 (7) ÅT = 296 K
β = 106.068 (2)°Prism, light yellow
V = 1067.59 (6) Å30.32 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2666 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.849, Tmax = 0.897l = 2828
11841 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2635P]
where P = (Fo2 + 2Fc2)/3
2666 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H9NOS2V = 1067.59 (6) Å3
Mr = 223.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0775 (3) ŵ = 0.46 mm1
b = 6.4058 (2) ÅT = 296 K
c = 21.4715 (7) Å0.32 × 0.24 × 0.22 mm
β = 106.068 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2116 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.897Rint = 0.026
11841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2666 reflectionsΔρmin = 0.22 e Å3
129 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.90452 (5)0.42703 (7)0.26996 (2)0.0484 (1)
S20.85641 (6)0.38555 (7)0.12935 (2)0.0511 (2)
O10.54228 (16)0.04248 (19)0.26950 (6)0.0537 (4)
N10.67528 (14)0.18699 (18)0.19889 (5)0.0324 (3)
C10.56186 (18)0.0913 (2)0.14230 (7)0.0337 (4)
C20.5937 (2)0.1103 (2)0.12588 (8)0.0419 (5)
C30.4818 (2)0.1972 (3)0.07148 (8)0.0501 (6)
C40.3436 (2)0.0858 (3)0.03533 (8)0.0518 (6)
C50.3103 (2)0.1156 (3)0.05186 (7)0.0461 (5)
C60.42217 (18)0.2036 (3)0.10687 (7)0.0391 (5)
C70.65129 (19)0.1553 (2)0.26005 (7)0.0363 (4)
C80.77847 (19)0.2774 (3)0.31088 (7)0.0410 (5)
C90.80207 (17)0.3243 (2)0.19488 (7)0.0342 (4)
C100.1604 (2)0.2403 (4)0.01220 (10)0.0730 (8)
H20.687580.185170.150690.0502*
H30.500360.332540.059250.0602*
H40.270250.147090.001260.0621*
H60.402570.337920.119640.0469*
H8A0.851880.184030.342190.0492*
H8B0.719120.369220.333520.0492*
H10A0.066100.230260.031160.1095*0.58 (3)
H10B0.125500.186490.031210.1095*0.58 (3)
H10C0.193880.383820.011320.1095*0.58 (3)
H10D0.194240.313760.021270.1095*0.42 (3)
H10E0.124700.338750.039630.1095*0.42 (3)
H10F0.066530.148070.007080.1095*0.42 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0426 (2)0.0565 (3)0.0445 (2)0.0166 (2)0.0092 (2)0.0128 (2)
S20.0545 (3)0.0578 (3)0.0449 (2)0.0180 (2)0.0202 (2)0.0016 (2)
O10.0636 (8)0.0544 (7)0.0476 (7)0.0196 (6)0.0227 (6)0.0006 (5)
N10.0328 (6)0.0310 (5)0.0331 (6)0.0024 (5)0.0088 (5)0.0023 (5)
C10.0341 (7)0.0342 (7)0.0343 (7)0.0077 (6)0.0120 (6)0.0027 (6)
C20.0433 (8)0.0364 (8)0.0482 (9)0.0029 (6)0.0166 (7)0.0041 (7)
C30.0592 (10)0.0442 (9)0.0529 (10)0.0167 (8)0.0253 (8)0.0169 (8)
C40.0521 (10)0.0673 (11)0.0375 (8)0.0261 (9)0.0150 (7)0.0131 (8)
C50.0379 (8)0.0627 (10)0.0371 (8)0.0096 (7)0.0094 (6)0.0066 (7)
C60.0385 (8)0.0399 (8)0.0395 (8)0.0039 (6)0.0119 (6)0.0011 (6)
C70.0395 (8)0.0343 (7)0.0359 (7)0.0028 (6)0.0118 (6)0.0018 (6)
C80.0388 (8)0.0481 (9)0.0351 (7)0.0015 (7)0.0087 (6)0.0026 (7)
C90.0314 (7)0.0319 (7)0.0389 (7)0.0006 (5)0.0091 (6)0.0025 (6)
C100.0505 (11)0.0965 (17)0.0611 (12)0.0013 (11)0.0027 (9)0.0161 (11)
Geometric parameters (Å, º) top
S1—C81.7952 (17)C7—C81.496 (2)
S1—C91.7258 (15)C2—H20.9300
S2—C91.6335 (15)C3—H30.9300
O1—C71.199 (2)C4—H40.9300
N1—C11.4406 (18)C6—H60.9300
N1—C71.3943 (18)C8—H8A0.9700
N1—C91.3707 (18)C8—H8B0.9700
C1—C21.3814 (19)C10—H10A0.9600
C1—C61.376 (2)C10—H10B0.9600
C2—C31.381 (2)C10—H10C0.9600
C3—C41.371 (2)C10—H10D0.9600
C4—C51.384 (3)C10—H10E0.9600
C5—C61.392 (2)C10—H10F0.9600
C5—C101.503 (3)
C8—S1—C993.63 (7)C2—C3—H3120.00
C1—N1—C7120.71 (12)C4—C3—H3120.00
C1—N1—C9122.13 (11)C3—C4—H4119.00
C7—N1—C9116.98 (11)C5—C4—H4119.00
N1—C1—C2119.55 (13)C1—C6—H6120.00
N1—C1—C6118.46 (13)C5—C6—H6120.00
C2—C1—C6121.98 (14)S1—C8—H8A110.00
C1—C2—C3117.92 (15)S1—C8—H8B110.00
C2—C3—C4120.60 (17)C7—C8—H8A110.00
C3—C4—C5121.72 (16)C7—C8—H8B110.00
C4—C5—C6117.93 (16)H8A—C8—H8B109.00
C4—C5—C10122.24 (16)C5—C10—H10A109.00
C6—C5—C10119.83 (17)C5—C10—H10B109.00
C1—C6—C5119.84 (16)C5—C10—H10C109.00
O1—C7—N1123.17 (14)C5—C10—H10D109.00
O1—C7—C8125.44 (14)C5—C10—H10E109.00
N1—C7—C8111.39 (12)C5—C10—H10F109.00
S1—C8—C7106.86 (10)H10A—C10—H10B109.00
S1—C9—S2122.64 (8)H10A—C10—H10C109.00
S1—C9—N1111.07 (10)H10B—C10—H10C109.00
S2—C9—N1126.29 (11)H10D—C10—H10E109.00
C1—C2—H2121.00H10D—C10—H10F109.00
C3—C2—H2121.00H10E—C10—H10F109.00
C9—S1—C8—C72.42 (12)C7—N1—C9—S2179.24 (11)
C8—S1—C9—S2177.72 (10)N1—C1—C2—C3179.72 (14)
C8—S1—C9—N11.42 (11)C6—C1—C2—C31.1 (2)
C7—N1—C1—C285.14 (18)N1—C1—C6—C5179.89 (14)
C7—N1—C1—C693.56 (16)C2—C1—C6—C51.5 (2)
C9—N1—C1—C299.88 (17)C1—C2—C3—C40.2 (2)
C9—N1—C1—C681.42 (18)C2—C3—C4—C50.4 (3)
C1—N1—C7—O13.2 (2)C3—C4—C5—C60.0 (3)
C1—N1—C7—C8177.29 (12)C3—C4—C5—C10179.27 (17)
C9—N1—C7—O1178.41 (14)C4—C5—C6—C10.9 (2)
C9—N1—C7—C82.06 (18)C10—C5—C6—C1178.41 (15)
C1—N1—C9—S1175.30 (10)O1—C7—C8—S1177.61 (13)
C1—N1—C9—S25.60 (19)N1—C7—C8—S12.88 (16)
C7—N1—C9—S10.14 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg2i0.972.593.5219 (17)162
C7—O1···Cg1i1.20 (1)2.94 (1)4.1070 (16)164 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9NOS2
Mr223.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0775 (3), 6.4058 (2), 21.4715 (7)
β (°) 106.068 (2)
V3)1067.59 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.849, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
11841, 2666, 2116
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.03
No. of reflections2666
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg2i0.972.593.5219 (17)162
C7—O1···Cg1i1.199 (2)2.9413 (14)4.1070 (16)163.94 (11)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009e). Acta Cryst. E65, o3015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds