organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,6E)-2,6-Difurfuryl­idene­cyclo­hexa­none

aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: mashy910@163.com

(Received 4 November 2009; accepted 9 November 2009; online 14 November 2009)

The complete mol­ecule of the title compound, C16H14O3, is generated by crystallographic mirror symmetry, with two C atoms and one O atom lying on the mirror plane. The mol­ecule adopts an E configuration about the C=C bond and the dihedral angle between the furan rings is 16.1 (2)°.

Related literature

For general background to the use of bis­(aryl­methyl­idene)cyclo­alkanones as building blocks for the synthesis of biologically active heterocycles, see: Guilford et al. (1999[Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.]). For related structures, see: Liu & Chen (2009[Liu, D. & Chen, G. (2009). Acta Cryst. E65, o928.]); Liu (2009[Liu, D. (2009). Acta Cryst. E65, o694.]); Shi et al. (2008[Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O3

  • Mr = 254.27

  • Orthorhombic, P n m a

  • a = 7.7313 (11) Å

  • b = 15.658 (2) Å

  • c = 10.3388 (14) Å

  • V = 1251.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.995

  • 6025 measured reflections

  • 1158 independent reflections

  • 731 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.03

  • 1158 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford et al., 1999). In the present paper, we describe the crystal stucture of the title compound. The molecule posseses normal geometric parameters and adopts an E-configuration about the central olefinic bonds (Fig. 1). The cyclohexanone ring and the furan rings are alomst coplanar which allows conjugation. Similar structures have been observed in the related substituted cyclopentanone and cyclohexanone analogues reported by Liu & Chen (2009); Liu (2009); Shi et al. (2008).

Related literature top

For general background to the use of bis(arylmethylidene)cycloalkanones as building blocks for the synthesis of biologically active heterocycles, see: Guilford et al. (1999). For related structures, see: Liu & Chen (2009); Liu (2009); Shi et al. (2008).

Experimental top

Tetrabutylammonium bromide (0.5 mmol) and NaOH (10 mmol) were dissolved in the mixture of water (10 ml) and ethanol (4 ml). The solution was stirred at room temperature for 10 min, followed by dropwise addition of a mixture of furaldehyde (20 mmol) and cyclohexanone (10 mmol).The mixture was stirred at the temperature of 303 K for 2 h. When the reaction was complete, the residue was filtered. The precipitate was washed by water and recrystallized from ethyl acetate to yield yellow blocks of (I). Analysis calculated for C16H14O3: C 75.59, H 5.51%; found: C 75.65, H 5.46%.

Refinement top

All H-atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions, with C—H = 0.93 - 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix A are generated by (x, 3/2–y, z).
(2E,6E)-2,6-Difurfurylidenecyclohexanone top
Crystal data top
C16H14O3Dx = 1.349 Mg m3
Mr = 254.27Melting point: 417 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 472 reflections
a = 7.7313 (11) Åθ = 2.6–19.2°
b = 15.658 (2) ŵ = 0.09 mm1
c = 10.3388 (14) ÅT = 295 K
V = 1251.5 (3) Å3Block, yellow
Z = 40.15 × 0.10 × 0.06 mm
F(000) = 536
Data collection top
Siemens SMART CCD
diffractometer
1158 independent reflections
Radiation source: fine-focus sealed tube731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.986, Tmax = 0.995k = 1518
6025 measured reflectionsl = 129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2592P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1158 reflectionsΔρmax = 0.17 e Å3
92 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C16H14O3V = 1251.5 (3) Å3
Mr = 254.27Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.7313 (11) ŵ = 0.09 mm1
b = 15.658 (2) ÅT = 295 K
c = 10.3388 (14) Å0.15 × 0.10 × 0.06 mm
Data collection top
Siemens SMART CCD
diffractometer
1158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
731 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.995Rint = 0.072
6025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
1158 reflectionsΔρmin = 0.16 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0245 (3)0.75000.0550 (2)0.0606 (7)
O20.1187 (2)0.44953 (11)0.12636 (15)0.0689 (6)
C10.0568 (4)0.75000.1720 (3)0.0461 (8)
C20.0806 (3)0.66875 (14)0.24340 (19)0.0434 (6)
C30.0950 (3)0.67029 (14)0.3886 (2)0.0509 (7)
H3A0.21600.66680.41290.061*
H3B0.03670.62060.42390.061*
C40.0172 (4)0.75000.4467 (3)0.0527 (9)
H4A0.03660.75000.53940.063*
H4B0.10670.75000.43190.063*
C50.0954 (3)0.59655 (14)0.1739 (2)0.0494 (6)
H50.07940.60220.08520.059*
C60.1324 (3)0.51243 (15)0.2189 (2)0.0497 (7)
C70.1845 (4)0.47563 (15)0.3310 (2)0.0602 (7)
H70.20480.50360.40890.072*
C80.2024 (4)0.38729 (16)0.3081 (2)0.0646 (8)
H80.23660.34600.36740.078*
C90.1606 (4)0.37468 (17)0.1841 (3)0.0729 (9)
H90.16030.32180.14320.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0879 (19)0.0532 (15)0.0406 (13)0.0000.0145 (12)0.000
O20.1102 (16)0.0485 (11)0.0481 (10)0.0097 (10)0.0021 (10)0.0052 (8)
C10.051 (2)0.051 (2)0.0365 (17)0.0000.0044 (15)0.000
C20.0445 (14)0.0456 (14)0.0402 (12)0.0018 (11)0.0005 (10)0.0007 (11)
C30.0656 (17)0.0479 (14)0.0391 (12)0.0026 (13)0.0014 (11)0.0010 (11)
C40.061 (2)0.059 (2)0.0387 (17)0.0000.0036 (16)0.000
C50.0538 (15)0.0524 (16)0.0421 (13)0.0002 (12)0.0027 (11)0.0021 (11)
C60.0596 (17)0.0451 (14)0.0445 (13)0.0001 (12)0.0003 (11)0.0024 (11)
C70.0767 (19)0.0525 (16)0.0513 (14)0.0008 (14)0.0073 (13)0.0004 (12)
C80.081 (2)0.0479 (16)0.0650 (17)0.0033 (14)0.0018 (15)0.0110 (13)
C90.109 (2)0.0432 (16)0.0669 (18)0.0100 (16)0.0138 (17)0.0018 (14)
Geometric parameters (Å, º) top
O1—C11.235 (3)C4—H4A0.9700
O2—C91.355 (3)C4—H4B0.9700
O2—C61.377 (2)C5—C61.426 (3)
C1—C2i1.482 (3)C5—H50.9300
C1—C21.482 (3)C6—C71.355 (3)
C2—C51.344 (3)C7—C81.410 (3)
C2—C31.506 (3)C7—H70.9300
C3—C41.510 (3)C8—C91.336 (3)
C3—H3A0.9700C8—H80.9300
C3—H3B0.9700C9—H90.9300
C4—C3i1.510 (3)
C9—O2—C6107.08 (19)C3i—C4—H4B109.3
O1—C1—C2i120.85 (13)H4A—C4—H4B108.0
O1—C1—C2120.85 (13)C2—C5—C6128.3 (2)
C2i—C1—C2118.2 (3)C2—C5—H5115.9
C5—C2—C1117.8 (2)C6—C5—H5115.9
C5—C2—C3122.7 (2)C7—C6—O2108.2 (2)
C1—C2—C3119.5 (2)C7—C6—C5137.0 (2)
C2—C3—C4112.3 (2)O2—C6—C5114.73 (19)
C2—C3—H3A109.1C6—C7—C8107.6 (2)
C4—C3—H3A109.1C6—C7—H7126.2
C2—C3—H3B109.1C8—C7—H7126.2
C4—C3—H3B109.1C9—C8—C7106.4 (2)
H3A—C3—H3B107.9C9—C8—H8126.8
C3—C4—C3i111.5 (3)C7—C8—H8126.8
C3—C4—H4A109.3C8—C9—O2110.7 (2)
C3i—C4—H4A109.3C8—C9—H9124.7
C3—C4—H4B109.3O2—C9—H9124.7
O1—C1—C2—C511.1 (4)C9—O2—C6—C70.9 (3)
C2i—C1—C2—C5166.16 (18)C9—O2—C6—C5179.0 (2)
O1—C1—C2—C3171.5 (3)C2—C5—C6—C710.1 (5)
C2i—C1—C2—C311.2 (4)C2—C5—C6—O2172.5 (2)
C5—C2—C3—C4161.0 (2)O2—C6—C7—C80.5 (3)
C1—C2—C3—C421.8 (3)C5—C6—C7—C8178.0 (3)
C2—C3—C4—C3i55.1 (3)C6—C7—C8—C90.0 (3)
C1—C2—C5—C6174.6 (2)C7—C8—C9—O20.6 (3)
C3—C2—C5—C62.7 (4)C6—O2—C9—C80.9 (3)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC16H14O3
Mr254.27
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)7.7313 (11), 15.658 (2), 10.3388 (14)
V3)1251.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6025, 1158, 731
Rint0.072
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.03
No. of reflections1158
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No.Y07–2-14).

References

First citationGuilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, D. (2009). Acta Cryst. E65, o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, D. & Chen, G. (2009). Acta Cryst. E65, o928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds