organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An ortho­rhom­bic polymorph of 5-[(4-methyl­phen­yl)diazen­yl]salicylaldehyde

aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 November 2009; accepted 6 November 2009; online 11 November 2009)

The title compound, C14H12N2O2, is an ortho­rhom­bic polymorph of the previously reported monoclinic form [Bakir et al. (2005[Bakir, M., Harewood, G. R., Holder, A., Hassan, I., Dasgupta, T. P., Maragh, P. & Singh-Wilmot, M. (2005). Acta Cryst. E61, o1611-o1613.]). Acta Cryst. E61, o1611–o1613]. The dihedral angle between the aromatic rings is 4.32 (13)°. The mol­ecular structures of the two polymorphs, including short intra­molecular O—H⋯O hydrogen bonds between the the hydr­oxy and keto groups, are quite similar but their crystal packings are distinct. Unlike the monoclinic form, in which centrosymmetrically related hydr­oxy and keto groups form {⋯H⋯O}2 synthons via weak O—H⋯O contacts, leading to dimeric aggregates, in the ortho­rhom­bic form, the hydrogen bonding between these groups leads to the formation of supra­molecular chains orientated along the a axis.

Related literature

For the structure of the monoclinic polymorph, see: Bakir et al. (2005[Bakir, M., Harewood, G. R., Holder, A., Hassan, I., Dasgupta, T. P., Maragh, P. & Singh-Wilmot, M. (2005). Acta Cryst. E61, o1611-o1613.]). For background and motivation for the synthesis of the title compound, see: Basu Baul et al. (2005[Basu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935-944.]). For the synthesis, see: Sarma et al. (1993[Sarma, K., Basu Baul, T. S., Basaiawmoit, W. L. & Saran, R. (1993). Spectrochim. Acta Part A, 49, 1027.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2

  • Mr = 240.26

  • Orthorhombic, P b n a

  • a = 6.016 (4) Å

  • b = 14.299 (9) Å

  • c = 26.878 (17) Å

  • V = 2312 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: none

  • 12587 measured reflections

  • 2032 independent reflections

  • 1774 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.208

  • S = 1.14

  • 2032 reflections

  • 167 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2 0.84 2.01 2.700 (3) 139
O1—H1o⋯O2i 0.84 2.44 3.008 (3) 125
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was isolated during on-going studies into the biological activities of their organotin complexes (Basu Baul et al., 2005). The structure of (I) represents an orthorhombic polymorph of a previously reported monoclinic form (Bakir et al., 2005). The molecular structure of (I), Fig. 1, closely resembles that of the monoclinic form, with comparable geometric parameters being equal within experimental error. The overall molecule of (I) is planar as seen in the values of the C1/C2/C3/O2, C5/C4/N1/N2 and C9/C8/N2/N1 torsion angles of 0.9 (4), 0.7 (4) and -178.0 (2) °, respectively. In each of the polymorphs, a short intramolecular O–H···O hydrogen bond is formed between the hydroxyl and keto groups, Table 1. The key difference between the polymorphs rests with the nature of the weaker O–H···O intermolecular interactions formed between these groups. Thus, in the previously reported monoclinic form, the crystal structure comprises the packing of centrosymmetric dimers linked by a four-membered {···H···O}2 synthon. By contrast, in (I) the intermolecular hydrogen bonding between these groups leads to 1-D supramolecular chains aligned along the a direction, Table 1 and Fig. 2. The crystal structure comprises packing of these chains as illustrated in Fig. 3.

Related literature top

For the structure of the monoclinic polymorph, see: Bakir et al. (2005). For background and motivation for the synthesis of the title compound, see: Basu Baul et al. (2005). For the synthesis, see: Sarma et al. (1993).

Experimental top

Compound (I) was prepared by reacting p-tolyldiazonium chloride with o-hydroxybenzaldehyde using a previously reported method (Sarma et al., 1993). Orange crystals were obtained by slow evaporation of a methanol solution of (I); m.pt. 421–423 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the a axis in (I) mediated by O–H···O hydrogen bonds (orange dashed lines).
[Figure 3] Fig. 3. View in projection down the a axis of the crystal packing in (I), highlighting the stacking of supramolecular chains. The O–H···O hydrogen bonds are highlighted as orange dashed lines.
5-[(4-methylphenyl)diazenyl]salicylaldehyde top
Crystal data top
C14H12N2O2F(000) = 1008
Mr = 240.26Dx = 1.380 Mg m3
Orthorhombic, PbnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2bCell parameters from 8423 reflections
a = 6.016 (4) Åθ = 3.0–40.5°
b = 14.299 (9) ŵ = 0.09 mm1
c = 26.878 (17) ÅT = 98 K
V = 2312 (3) Å3Prism, orange
Z = 80.25 × 0.18 × 0.15 mm
Data collection top
Rigaku Saturn724
diffractometer
1774 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.082
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
Detector resolution: 28.5714 pixels mm-1h = 57
ω scansk = 1717
12587 measured reflectionsl = 3131
2032 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0971P)2 + 2.61P]
where P = (Fo2 + 2Fc2)/3
2032 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C14H12N2O2V = 2312 (3) Å3
Mr = 240.26Z = 8
Orthorhombic, PbnaMo Kα radiation
a = 6.016 (4) ŵ = 0.09 mm1
b = 14.299 (9) ÅT = 98 K
c = 26.878 (17) Å0.25 × 0.18 × 0.15 mm
Data collection top
Rigaku Saturn724
diffractometer
1774 reflections with I > 2σ(I)
12587 measured reflectionsRint = 0.082
2032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0811 restraint
wR(F2) = 0.208H-atom parameters constrained
S = 1.14Δρmax = 0.40 e Å3
2032 reflectionsΔρmin = 0.32 e Å3
167 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5504 (3)0.03566 (15)0.16786 (7)0.0290 (5)
H1O0.49570.04110.19650.043*
O20.2044 (3)0.07693 (15)0.22794 (7)0.0340 (6)
N10.0156 (4)0.13491 (16)0.01161 (7)0.0245 (6)
N20.0617 (4)0.12120 (16)0.03149 (8)0.0251 (6)
C10.4095 (4)0.0603 (2)0.13084 (9)0.0248 (6)
C20.1931 (4)0.09462 (19)0.13980 (9)0.0242 (6)
C30.0583 (4)0.12043 (19)0.09890 (9)0.0239 (6)
H30.08640.14460.10470.029*
C40.1341 (4)0.11101 (18)0.05081 (9)0.0226 (6)
C50.3522 (5)0.07589 (19)0.04248 (9)0.0250 (6)
H50.40580.06980.00940.030*
C60.4862 (4)0.0508 (2)0.08146 (9)0.0252 (6)
H60.63090.02690.07530.030*
C70.1029 (5)0.1000 (2)0.18997 (10)0.0285 (7)
H70.04440.12280.19380.034*
C80.0859 (4)0.14457 (19)0.07115 (9)0.0239 (6)
C90.0071 (5)0.12717 (19)0.11890 (9)0.0263 (7)
H90.13670.10100.12340.032*
C100.1380 (5)0.1479 (2)0.16010 (10)0.0276 (7)
H100.08240.13590.19260.033*
C110.3501 (5)0.18602 (19)0.15435 (9)0.0265 (7)
C120.4272 (5)0.20340 (19)0.10605 (9)0.0262 (6)
H120.57090.22970.10150.031*
C130.2985 (5)0.18306 (19)0.06474 (10)0.0256 (6)
H130.35370.19510.03230.031*
C140.4928 (5)0.2058 (2)0.19935 (10)0.0341 (7)
H14A0.44100.26310.21560.051*
H14B0.64770.21370.18890.051*
H14C0.48230.15330.22270.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (11)0.0436 (13)0.0203 (10)0.0040 (9)0.0026 (7)0.0010 (8)
O20.0260 (11)0.0533 (14)0.0227 (10)0.0007 (9)0.0016 (8)0.0003 (9)
N10.0246 (12)0.0289 (13)0.0202 (12)0.0002 (10)0.0018 (9)0.0010 (9)
N20.0238 (12)0.0293 (13)0.0221 (12)0.0007 (10)0.0029 (10)0.0001 (9)
C10.0214 (14)0.0306 (15)0.0224 (13)0.0030 (11)0.0023 (10)0.0018 (11)
C20.0223 (13)0.0280 (15)0.0222 (13)0.0001 (11)0.0021 (11)0.0006 (10)
C30.0197 (13)0.0282 (14)0.0239 (14)0.0017 (11)0.0011 (11)0.0012 (10)
C40.0212 (14)0.0248 (14)0.0217 (13)0.0024 (10)0.0033 (11)0.0005 (10)
C50.0242 (14)0.0306 (15)0.0203 (12)0.0003 (11)0.0014 (11)0.0021 (11)
C60.0191 (13)0.0312 (15)0.0252 (13)0.0002 (11)0.0008 (11)0.0021 (11)
C70.0240 (14)0.0362 (16)0.0255 (14)0.0008 (12)0.0011 (12)0.0004 (11)
C80.0231 (14)0.0267 (15)0.0219 (13)0.0015 (11)0.0026 (11)0.0001 (10)
C90.0241 (14)0.0298 (15)0.0251 (14)0.0025 (11)0.0012 (11)0.0007 (11)
C100.0273 (14)0.0350 (16)0.0204 (13)0.0023 (12)0.0020 (11)0.0014 (11)
C110.0279 (15)0.0258 (15)0.0258 (14)0.0033 (11)0.0034 (12)0.0009 (11)
C120.0223 (14)0.0277 (15)0.0285 (14)0.0005 (11)0.0004 (11)0.0007 (11)
C130.0278 (15)0.0256 (15)0.0234 (13)0.0016 (11)0.0002 (11)0.0009 (10)
C140.0369 (16)0.0407 (18)0.0248 (14)0.0037 (14)0.0051 (12)0.0033 (12)
Geometric parameters (Å, º) top
O1—C11.353 (3)C7—H70.9500
O1—H1O0.8400C8—C91.391 (4)
O2—C71.234 (3)C8—C131.403 (4)
N1—N21.264 (3)C9—C101.391 (4)
N1—C41.428 (3)C9—H90.9500
N2—C81.427 (3)C10—C111.396 (4)
C1—C61.411 (4)C10—H100.9500
C1—C21.413 (4)C11—C121.401 (4)
C2—C31.415 (4)C11—C141.510 (4)
C2—C71.455 (4)C12—C131.385 (4)
C3—C41.377 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.423 (4)C14—H14A0.9800
C5—C61.370 (4)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—H60.9500
C1—O1—H1O113.8C9—C8—C13119.6 (2)
N2—N1—C4114.0 (2)C9—C8—N2115.8 (2)
N1—N2—C8114.8 (2)C13—C8—N2124.6 (2)
O1—C1—C6117.5 (2)C8—C9—C10120.2 (3)
O1—C1—C2122.8 (2)C8—C9—H9119.9
C6—C1—C2119.7 (2)C10—C9—H9119.9
C1—C2—C3119.1 (2)C9—C10—C11120.8 (2)
C1—C2—C7121.3 (2)C9—C10—H10119.6
C3—C2—C7119.5 (2)C11—C10—H10119.6
C4—C3—C2120.9 (2)C10—C11—C12118.3 (2)
C4—C3—H3119.5C10—C11—C14120.3 (2)
C2—C3—H3119.5C12—C11—C14121.4 (3)
C3—C4—C5119.2 (2)C13—C12—C11121.4 (3)
C3—C4—N1117.4 (2)C13—C12—H12119.3
C5—C4—N1123.4 (2)C11—C12—H12119.3
C6—C5—C4121.0 (2)C12—C13—C8119.6 (2)
C6—C5—H5119.5C12—C13—H13120.2
C4—C5—H5119.5C8—C13—H13120.2
C5—C6—C1120.1 (2)C11—C14—H14A109.5
C5—C6—H6119.9C11—C14—H14B109.5
C1—C6—H6119.9H14A—C14—H14B109.5
O2—C7—C2124.6 (3)C11—C14—H14C109.5
O2—C7—H7117.7H14A—C14—H14C109.5
C2—C7—H7117.7H14B—C14—H14C109.5
C4—N1—N2—C8179.9 (2)C2—C1—C6—C50.8 (4)
O1—C1—C2—C3178.8 (2)C1—C2—C7—O20.9 (5)
C6—C1—C2—C31.1 (4)C3—C2—C7—O2178.1 (3)
O1—C1—C2—C74.0 (4)N1—N2—C8—C9178.0 (2)
C6—C1—C2—C7176.1 (3)N1—N2—C8—C132.2 (4)
C1—C2—C3—C41.1 (4)C13—C8—C9—C100.1 (4)
C7—C2—C3—C4176.2 (3)N2—C8—C9—C10179.8 (2)
C2—C3—C4—C50.8 (4)C8—C9—C10—C110.2 (4)
C2—C3—C4—N1177.4 (2)C9—C10—C11—C120.3 (4)
N2—N1—C4—C3177.4 (2)C9—C10—C11—C14178.4 (3)
N2—N1—C4—C50.7 (4)C10—C11—C12—C130.4 (4)
C3—C4—C5—C60.6 (4)C14—C11—C12—C13178.3 (3)
N1—C4—C5—C6177.6 (3)C11—C12—C13—C80.2 (4)
C4—C5—C6—C10.6 (4)C9—C8—C13—C120.1 (4)
O1—C1—C6—C5179.0 (2)N2—C8—C13—C12179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O20.842.012.700 (3)139
O1—H1o···O2i0.842.443.008 (3)125
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupOrthorhombic, Pbna
Temperature (K)98
a, b, c (Å)6.016 (4), 14.299 (9), 26.878 (17)
V3)2312 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12587, 2032, 1774
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.208, 1.14
No. of reflections2032
No. of parameters167
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O20.842.012.700 (3)139
O1—H1o···O2i0.842.443.008 (3)125
Symmetry code: (i) x+1/2, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: basubaul@hotmail.com.

Acknowledgements

The financial support of the Department of Science & Technology, New Delhi, India (grant No. SR/S1/IC-03/2005, TSBB) and the University Grants Commission, New Delhi, India, through SAP–DSA (Phase-III), is gratefully acknowledged.

References

First citationBakir, M., Harewood, G. R., Holder, A., Hassan, I., Dasgupta, T. P., Maragh, P. & Singh-Wilmot, M. (2005). Acta Cryst. E61, o1611–o1613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBasu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935–944.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSarma, K., Basu Baul, T. S., Basaiawmoit, W. L. & Saran, R. (1993). Spectrochim. Acta Part A, 49, 1027.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds