organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3,5-Bis(tri­fluoro­meth­yl)phen­yl]-3-[(5-ethenyl-1-aza­bi­cyclo­[2.2.2]octan-2-yl)(6-meth­oxy­quinolin-4-yl)meth­yl]thio­urea–L-proline–methanol (1/1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 November 2009; accepted 7 November 2009; online 14 November 2009)

In the methanol solvate of the title 1:1 cocrystal, C29H28F6N4OS·C5H9NO2·CH4O, the L-proline mol­ecule exists as a zwitterion. In the crystal, the disubstituted thio­urea, L-proline and methanol mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional array in the ab plane.

Related literature

For background to pre-catalyst mol­ecules for the Michael addition of acetone to trans-β-nitro­styrene, see: Mandal & Zhao (2008[Mandal, T. & Zhao, C.-G. (2008). Angew Chem. Int Ed. 47, 7714-7717.]). For a related structure, see: Muramulla et al. (2009[Muramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2962.]). For discussion on the definition of a co-crystal, see: Zukerman-Schpector & Tiekink (2008[Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.]). For the synthesis, see: Vakulya et al. (2005[Vakulya, B., Varga, S., Csámpai, A. & Soós, T. (2005). Org. Lett. 7, 1967-1969.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28F6N4OS·C5H9NO2·CH4O

  • Mr = 741.79

  • Orthorhombic, P 21 21 21

  • a = 11.597 (3) Å

  • b = 13.044 (4) Å

  • c = 23.907 (7) Å

  • V = 3616.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 98 K

  • 0.28 × 0.25 × 0.05 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.722, Tmax = 1.000

  • 26093 measured reflections

  • 8250 independent reflections

  • 7519 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.149

  • S = 1.06

  • 8250 reflections

  • 471 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3638 Friedel pairs

  • Flack parameter: −0.03 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.88 1.87 2.749 (3) 177
N2—H2n⋯O3i 0.88 1.95 2.806 (3) 165
N5—H5a⋯N4 0.92 2.16 2.912 (3) 138
N5—H5a⋯O3i 0.92 2.40 3.111 (3) 134
N5—H5b⋯O4ii 0.92 2.03 2.858 (3) 149
O4—H4o⋯N3iii 0.84 1.98 2.805 (4) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) x, y, z-1; (iii) x, y-1, z+1.

Data collection: CrystalClear (Rigaku/MSC 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title co-crystal (Zukerman-Schpector & Tiekink, 2008), (I), has been evaluated as a pre-catalyst for the Michael addition of acetone to trans-β-nitrostyrene (Mandal & Zhao, 2008; Muramulla et al., 2009). The combination of quinidine thiourea and L-proline is activating both the nucleophile and electrophile of the Michael reactions. The asymmetric Michael addition of acidic carbon pronucleophiles to nitroolefins is an important carbon-carbon bond forming reaction that provides access to synthetically useful enantioenriched nitroalkanes.

The absolute structure of the co-crystal, isolated as a methanol solvate, (I), has been determined, Figs 1 and 2, and reveals the chirality at the N4, C10, C21, C23, C24 and C30 atoms of the disubstituted thiourea molecule to be S, R, R, R, S and S, respectively. The L-proline molecule exists as a zwitterion, a conclusion confirmed by the equality of the C35–O2 (1.257 (3) Å) and C35–O3 distances (1.250 (4) Å), and by the pattern of hydrogen bonding interactions involving both ammonium-H atoms. The proline ring conformation is an envelope on atom C(32).

In the crystal structure, molecules are connected into a supramolecular chain along the a axis which, in turn, are connected into layers in the ab plane, Table 1. Each N–H atom of the disubstituted urea molecule is hydrogen bonded to a carboxylate-O atom. One of the ammonium-H atoms of the proline molecule links a neighbouring molecule by forming an N5–H5a···N4 hydrogen bond with the nitrogen atom of the dabco residue; the H5a atom also forms a weak N–H···O contact with a carboxylate-O3 atom to provide extra stability to the chain. The second ammonium-H forms a N–H···O hydrogen bond with the solvent methanol molecule. As shown in Fig. 3, the hydrogen bonding scheme described thus far leads to the formation of a supramolecular chain. The pyridine-N3 atoms are directed to the periphery of this chain and these hydrogen bond with the methanol molecule to form links between chains to generate a 2-D array, Fig. 4.

Related literature top

For background to pre-catalyst molecules for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008). For a related structure, see: Muramulla et al. (2009). For discussion on the definition of a co-crystal, see: Zukerman-Schpector & Tiekink (2008). For the synthesis, see: Vakulya et al. (2005).

Experimental top

Compound (I) was prepared from the reaction of quinidine thiourea (30 mg, 0.05 mmol), prepared using a literature procedure (Vakulya et al., 2005), and L-proline (Sigma Aldrich; 0.05 mmol) in a 1:1 ratio in methanol (2 ml). The vial was left uncorked and kept in a beaker half filled with pentane sealed with parafilm. After 1 day, crystals were isolated.

Refinement top

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl-C). In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement. The absolute configuration was determined on the basis of the known configuration of L-proline starting material.

Computing details top

Data collection: CrystalClear (Rigaku/MSC 2005); cell refinement: CrystalClear (Rigaku/MSC 2005); data reduction: CrystalClear (Rigaku/MSC 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the disubstituted urea molecule in (I), showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Molecular structure of zwitterionic L-proline, showing displacement ellipsoids at the 70% probability level.
[Figure 3] Fig. 3. Supramolecular chain along the a axis in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).
[Figure 4] Fig. 4. 2-D array in the ab plane in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).
1-[3,5-Bis(trifluoromethyl)phenyl]-3-[(5-ethenyl-1-azabicyclo[2.2.2]octan- 2-yl)(6-methoxyquinolin-4-yl)methyl]thiourea–L-proline–methanol (1/1/1) top
Crystal data top
C29H28F6N4OS·C5H9NO2·CH4OF(000) = 1552
Mr = 741.79Dx = 1.362 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16196 reflections
a = 11.597 (3) Åθ = 2.3–40.2°
b = 13.044 (4) ŵ = 0.17 mm1
c = 23.907 (7) ÅT = 98 K
V = 3616.4 (18) Å3Plate, colourless
Z = 40.28 × 0.25 × 0.05 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
8250 independent reflections
Radiation source: fine-focus sealed tube7519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1215
Tmin = 0.722, Tmax = 1.000k = 1616
26093 measured reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0632P)2 + 2.0147P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8250 reflectionsΔρmax = 0.44 e Å3
471 parametersΔρmin = 0.27 e Å3
3 restraintsAbsolute structure: Flack (1983), 3638 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C29H28F6N4OS·C5H9NO2·CH4OV = 3616.4 (18) Å3
Mr = 741.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.597 (3) ŵ = 0.17 mm1
b = 13.044 (4) ÅT = 98 K
c = 23.907 (7) Å0.28 × 0.25 × 0.05 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
8250 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7519 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 1.000Rint = 0.059
26093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.44 e Å3
S = 1.06Δρmin = 0.27 e Å3
8250 reflectionsAbsolute structure: Flack (1983), 3638 Friedel pairs
471 parametersAbsolute structure parameter: 0.03 (10)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20467 (6)1.01378 (6)0.06774 (3)0.03013 (16)
F10.27893 (18)0.9872 (2)0.24180 (9)0.0572 (6)
F20.16591 (19)1.00733 (17)0.31179 (9)0.0499 (5)
F30.23783 (18)0.86002 (16)0.29538 (10)0.0489 (5)
F40.2087 (2)0.8036 (2)0.30422 (9)0.0617 (7)
F50.2224 (2)0.71239 (17)0.22931 (13)0.0701 (8)
F60.30477 (17)0.85610 (18)0.23501 (10)0.0513 (6)
O10.52077 (19)1.13957 (19)0.08112 (11)0.0406 (6)
N10.0075 (2)0.9329 (2)0.08569 (10)0.0266 (5)
H1N0.07830.92260.07370.032*
N20.0423 (2)0.95532 (18)0.00465 (10)0.0244 (5)
H2N0.02320.92310.01060.029*
N30.0920 (3)1.3256 (2)0.06678 (12)0.0354 (6)
N40.0730 (2)0.83257 (18)0.10719 (10)0.0251 (5)
C10.0756 (2)0.9653 (2)0.04910 (12)0.0252 (5)
C20.0023 (3)0.9169 (2)0.14352 (12)0.0262 (6)
C30.0951 (3)0.9368 (2)0.17688 (12)0.0264 (6)
H30.16360.96280.16040.032*
C40.0906 (3)0.9185 (2)0.23392 (12)0.0277 (6)
C50.0068 (3)0.8775 (2)0.25935 (12)0.0274 (6)
H50.00870.86490.29850.033*
C60.1016 (3)0.8556 (2)0.22551 (12)0.0267 (6)
C70.1005 (3)0.8754 (2)0.16783 (12)0.0273 (6)
H70.16630.86060.14560.033*
C80.1931 (3)0.9433 (2)0.27009 (13)0.0326 (6)
C90.2074 (3)0.8054 (2)0.24908 (12)0.0314 (6)
C100.1097 (2)0.9926 (2)0.05211 (11)0.0240 (5)
H100.19140.96930.04810.029*
C110.1065 (3)1.1100 (2)0.05523 (11)0.0268 (6)
C120.0038 (3)1.1606 (2)0.05184 (13)0.0317 (6)
H120.06521.12330.04510.038*
C130.0004 (3)1.2689 (2)0.05832 (14)0.0358 (7)
H130.07321.30200.05640.043*
C140.1968 (3)1.2774 (2)0.06935 (12)0.0303 (6)
C150.2093 (3)1.1689 (2)0.06446 (12)0.0272 (5)
C160.3214 (3)1.1273 (2)0.06837 (13)0.0291 (6)
H160.33151.05530.06500.035*
C170.4170 (3)1.1892 (2)0.07707 (13)0.0331 (7)
C180.4039 (3)1.2961 (2)0.08108 (13)0.0367 (7)
H180.46961.33850.08630.044*
C190.2961 (3)1.3391 (2)0.07744 (13)0.0353 (7)
H190.28791.41140.08040.042*
C200.6235 (3)1.2008 (3)0.08248 (16)0.0441 (9)
H20A0.62251.24460.11580.066*
H20B0.69121.15600.08370.066*
H20C0.62691.24380.04890.066*
C210.0576 (3)0.9460 (2)0.10557 (11)0.0253 (5)
H210.02720.95950.10440.030*
C220.1037 (3)0.9946 (2)0.16008 (12)0.0316 (6)
H22A0.05181.05040.17250.038*
H22B0.18141.02380.15380.038*
C230.1093 (3)0.9104 (2)0.20482 (12)0.0296 (6)
H230.12270.94130.24260.035*
C240.2072 (3)0.8353 (2)0.19002 (12)0.0309 (6)
H240.19660.77160.21270.037*
C250.1918 (3)0.8074 (2)0.12748 (12)0.0287 (6)
H25A0.20630.73320.12230.034*
H25B0.24910.84540.10490.034*
C260.0115 (3)0.7913 (2)0.14802 (12)0.0286 (6)
H26A0.09040.79760.13250.034*
H26B0.00420.71770.15450.034*
C270.0043 (3)0.8501 (2)0.20430 (12)0.0298 (6)
H27A0.00640.80130.23600.036*
H27B0.07050.89760.20800.036*
C280.3260 (3)0.8790 (4)0.20272 (16)0.0503 (10)
H280.36310.91730.17410.060*
C290.3799 (4)0.8677 (3)0.2495 (2)0.0744 (16)
H29A0.34550.82980.27910.089*
H29B0.45410.89720.25440.089*
O20.27276 (18)0.59342 (16)0.04507 (9)0.0308 (5)
O30.3580 (2)0.67889 (19)0.02523 (10)0.0397 (6)
N50.0627 (2)0.66700 (18)0.02563 (10)0.0251 (5)
H5A0.03210.72540.04120.030*
H5B0.09290.62740.05390.030*
C300.1558 (2)0.6948 (2)0.01543 (12)0.0254 (6)
H300.16050.77100.01950.030*
C310.1171 (3)0.6463 (3)0.07085 (13)0.0367 (7)
H31A0.15100.57720.07560.044*
H31B0.13960.68960.10300.044*
C320.0125 (3)0.6405 (3)0.06533 (16)0.0436 (8)
H32A0.04860.70780.07280.052*
H32B0.04520.58890.09130.052*
C330.0294 (3)0.6086 (3)0.00486 (15)0.0400 (8)
H33A0.01900.53370.00030.048*
H33B0.10710.62790.00870.048*
C340.2729 (3)0.6519 (2)0.00328 (12)0.0274 (6)
O40.0694 (2)0.52089 (17)0.88533 (10)0.0431 (6)
H4O0.08700.46410.89950.065*
C350.0103 (3)0.4973 (3)0.84173 (15)0.0406 (7)
H36A0.08920.50290.85610.061*
H36B0.00340.42730.82840.061*
H36C0.00020.54570.81080.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0295 (3)0.0384 (4)0.0225 (3)0.0023 (3)0.0030 (3)0.0013 (3)
F10.0466 (11)0.0944 (18)0.0307 (10)0.0325 (13)0.0052 (9)0.0051 (11)
F20.0609 (13)0.0517 (12)0.0370 (11)0.0014 (10)0.0119 (10)0.0207 (10)
F30.0517 (12)0.0437 (11)0.0512 (13)0.0029 (9)0.0233 (11)0.0025 (10)
F40.0498 (12)0.108 (2)0.0278 (10)0.0225 (14)0.0036 (10)0.0171 (12)
F50.0691 (16)0.0384 (12)0.103 (2)0.0207 (11)0.0424 (16)0.0196 (13)
F60.0359 (10)0.0605 (14)0.0576 (14)0.0024 (10)0.0059 (10)0.0194 (11)
O10.0327 (11)0.0404 (13)0.0486 (15)0.0101 (10)0.0050 (11)0.0062 (11)
N10.0281 (11)0.0337 (13)0.0180 (11)0.0001 (10)0.0024 (10)0.0006 (9)
N20.0277 (11)0.0269 (12)0.0185 (11)0.0027 (9)0.0002 (9)0.0019 (9)
N30.0502 (16)0.0284 (12)0.0277 (13)0.0041 (11)0.0036 (13)0.0010 (11)
N40.0308 (12)0.0245 (11)0.0199 (11)0.0001 (9)0.0005 (10)0.0007 (9)
C10.0322 (14)0.0230 (13)0.0206 (12)0.0027 (11)0.0011 (11)0.0000 (10)
C20.0342 (14)0.0238 (13)0.0205 (13)0.0004 (11)0.0010 (12)0.0031 (10)
C30.0312 (14)0.0264 (13)0.0215 (13)0.0022 (11)0.0018 (11)0.0007 (10)
C40.0336 (14)0.0270 (13)0.0226 (13)0.0027 (12)0.0029 (12)0.0025 (11)
C50.0360 (15)0.0276 (13)0.0188 (13)0.0021 (12)0.0002 (12)0.0006 (10)
C60.0327 (14)0.0271 (14)0.0204 (13)0.0004 (12)0.0019 (12)0.0006 (10)
C70.0295 (14)0.0299 (14)0.0227 (13)0.0036 (12)0.0024 (11)0.0012 (11)
C80.0396 (16)0.0355 (15)0.0228 (14)0.0050 (13)0.0025 (13)0.0006 (12)
C90.0345 (15)0.0348 (15)0.0250 (14)0.0054 (13)0.0028 (13)0.0015 (11)
C100.0298 (13)0.0240 (13)0.0181 (12)0.0004 (11)0.0001 (10)0.0020 (10)
C110.0381 (15)0.0252 (13)0.0171 (13)0.0017 (11)0.0005 (12)0.0009 (10)
C120.0375 (15)0.0311 (15)0.0266 (14)0.0014 (13)0.0012 (13)0.0003 (11)
C130.0458 (18)0.0315 (15)0.0302 (16)0.0088 (14)0.0041 (15)0.0028 (12)
C140.0432 (16)0.0253 (13)0.0224 (13)0.0021 (12)0.0013 (13)0.0007 (11)
C150.0395 (15)0.0251 (13)0.0171 (12)0.0025 (12)0.0018 (12)0.0010 (10)
C160.0378 (15)0.0274 (13)0.0220 (13)0.0024 (11)0.0002 (12)0.0027 (11)
C170.0418 (17)0.0343 (16)0.0233 (15)0.0095 (13)0.0005 (13)0.0033 (11)
C180.0502 (19)0.0310 (16)0.0291 (16)0.0145 (14)0.0032 (14)0.0004 (12)
C190.0545 (18)0.0221 (13)0.0293 (16)0.0095 (14)0.0004 (15)0.0007 (11)
C200.0378 (17)0.052 (2)0.043 (2)0.0150 (16)0.0059 (15)0.0086 (16)
C210.0319 (14)0.0237 (13)0.0202 (12)0.0012 (11)0.0023 (11)0.0025 (10)
C220.0472 (17)0.0266 (14)0.0209 (13)0.0050 (13)0.0010 (12)0.0037 (11)
C230.0342 (15)0.0331 (15)0.0214 (13)0.0057 (12)0.0027 (12)0.0029 (11)
C240.0295 (14)0.0423 (16)0.0210 (13)0.0002 (13)0.0020 (12)0.0027 (12)
C250.0321 (15)0.0326 (15)0.0213 (13)0.0047 (12)0.0009 (11)0.0017 (11)
C260.0330 (15)0.0309 (14)0.0217 (13)0.0074 (12)0.0004 (12)0.0019 (11)
C270.0344 (14)0.0343 (15)0.0207 (13)0.0027 (12)0.0036 (12)0.0001 (11)
C280.0372 (18)0.087 (3)0.0270 (17)0.0125 (18)0.0021 (14)0.0054 (18)
C290.073 (3)0.051 (2)0.098 (4)0.024 (2)0.049 (3)0.013 (3)
O20.0304 (11)0.0346 (11)0.0275 (10)0.0001 (9)0.0004 (9)0.0076 (8)
O30.0342 (12)0.0472 (14)0.0376 (13)0.0069 (10)0.0082 (10)0.0150 (11)
N50.0296 (12)0.0230 (11)0.0227 (11)0.0038 (9)0.0034 (10)0.0015 (9)
C300.0287 (14)0.0256 (13)0.0220 (14)0.0002 (11)0.0039 (11)0.0001 (10)
C310.0424 (17)0.0456 (18)0.0221 (14)0.0013 (14)0.0009 (14)0.0018 (13)
C320.0428 (18)0.0484 (19)0.0396 (19)0.0055 (15)0.0124 (17)0.0022 (16)
C330.0317 (16)0.0484 (19)0.0400 (19)0.0103 (14)0.0109 (14)0.0094 (15)
C340.0336 (15)0.0263 (14)0.0222 (13)0.0029 (11)0.0019 (12)0.0001 (10)
O40.0703 (16)0.0265 (11)0.0324 (12)0.0038 (11)0.0218 (12)0.0040 (9)
C350.0451 (18)0.0412 (18)0.0354 (17)0.0002 (15)0.0088 (15)0.0022 (14)
Geometric parameters (Å, º) top
S1—C11.685 (3)C20—H20A0.9800
F1—C81.333 (4)C20—H20B0.9800
F2—C81.338 (4)C20—H20C0.9800
F3—C81.348 (4)C21—C221.545 (4)
F4—C91.319 (4)C21—H211.0000
F5—C91.314 (4)C22—C231.534 (4)
F6—C91.351 (4)C22—H22A0.9900
O1—C171.370 (4)C22—H22B0.9900
O1—C201.435 (4)C23—C271.535 (4)
N1—C11.369 (4)C23—C241.541 (4)
N1—C21.403 (4)C23—H231.0000
N1—H1N0.8799C24—C281.521 (4)
N2—C11.348 (4)C24—C251.549 (4)
N2—C101.461 (3)C24—H241.0000
N2—H2N0.8799C25—H25A0.9900
N3—C131.317 (4)C25—H25B0.9900
N3—C141.370 (4)C26—C271.551 (4)
N4—C261.484 (4)C26—H26A0.9900
N4—C211.491 (4)C26—H26B0.9900
N4—C251.497 (4)C27—H27A0.9900
C2—C71.389 (4)C27—H27B0.9900
C2—C31.406 (4)C28—C291.290 (6)
C3—C41.385 (4)C28—H280.9500
C3—H30.9500C29—H29A0.9500
C4—C51.389 (4)C29—H29B0.9500
C4—C81.505 (4)O2—C341.257 (3)
C5—C61.395 (4)O3—C341.250 (4)
C5—H50.9500N5—C331.501 (4)
C6—C71.403 (4)N5—C301.504 (4)
C6—C91.500 (4)N5—H5A0.9200
C7—H70.9500N5—H5B0.9200
C10—C111.533 (4)C30—C341.535 (4)
C10—C211.538 (4)C30—C311.535 (4)
C10—H101.0000C30—H301.0000
C11—C121.364 (4)C31—C321.511 (5)
C11—C151.436 (4)C31—H31A0.9900
C12—C131.423 (4)C31—H31B0.9900
C12—H120.9500C32—C331.517 (5)
C13—H130.9500C32—H32A0.9900
C14—C191.418 (4)C32—H32B0.9900
C14—C151.427 (4)C33—H33A0.9900
C15—C161.411 (4)C33—H33B0.9900
C16—C171.387 (4)O4—C351.426 (4)
C16—H160.9500O4—H4O0.8400
C17—C181.406 (5)C35—H36A0.9800
C18—C191.373 (5)C35—H36B0.9800
C18—H180.9500C35—H36C0.9800
C19—H190.9500
C17—O1—C20117.9 (3)N4—C21—H21107.0
C1—N1—C2128.2 (3)C10—C21—H21107.0
C1—N1—H1N119.7C22—C21—H21107.0
C2—N1—H1N112.1C23—C22—C21108.0 (2)
C1—N2—C10123.7 (2)C23—C22—H22A110.1
C1—N2—H2N116.5C21—C22—H22A110.1
C10—N2—H2N119.7C23—C22—H22B110.1
C13—N3—C14118.1 (3)C21—C22—H22B110.1
C26—N4—C21107.4 (2)H22A—C22—H22B108.4
C26—N4—C25108.4 (2)C22—C23—C27109.0 (2)
C21—N4—C25109.7 (2)C22—C23—C24109.0 (2)
N2—C1—N1112.2 (2)C27—C23—C24107.7 (2)
N2—C1—S1122.9 (2)C22—C23—H23110.3
N1—C1—S1124.9 (2)C27—C23—H23110.3
C7—C2—N1122.5 (3)C24—C23—H23110.3
C7—C2—C3119.5 (3)C28—C24—C23112.6 (3)
N1—C2—C3117.8 (3)C28—C24—C25112.7 (3)
C4—C3—C2119.8 (3)C23—C24—C25106.7 (2)
C4—C3—H3120.1C28—C24—H24108.3
C2—C3—H3120.1C23—C24—H24108.3
C3—C4—C5121.8 (3)C25—C24—H24108.3
C3—C4—C8119.9 (3)N4—C25—C24111.5 (2)
C5—C4—C8118.2 (3)N4—C25—H25A109.3
C4—C5—C6117.8 (3)C24—C25—H25A109.3
C4—C5—H5121.1N4—C25—H25B109.3
C6—C5—H5121.1C24—C25—H25B109.3
C5—C6—C7121.6 (3)H25A—C25—H25B108.0
C5—C6—C9121.1 (3)N4—C26—C27110.8 (2)
C7—C6—C9117.2 (3)N4—C26—H26A109.5
C2—C7—C6119.4 (3)C27—C26—H26A109.5
C2—C7—H7120.3N4—C26—H26B109.5
C6—C7—H7120.3C27—C26—H26B109.5
F1—C8—F2106.6 (3)H26A—C26—H26B108.1
F1—C8—F3106.6 (3)C23—C27—C26107.9 (2)
F2—C8—F3105.1 (3)C23—C27—H27A110.1
F1—C8—C4113.0 (3)C26—C27—H27A110.1
F2—C8—C4112.1 (3)C23—C27—H27B110.1
F3—C8—C4112.8 (3)C26—C27—H27B110.1
F5—C9—F4110.0 (3)H27A—C27—H27B108.4
F5—C9—F6104.6 (3)C29—C28—C24124.7 (4)
F4—C9—F6104.4 (3)C29—C28—H28117.6
F5—C9—C6112.1 (3)C24—C28—H28117.6
F4—C9—C6113.1 (3)C28—C29—H29A120.0
F6—C9—C6112.1 (2)C28—C29—H29B120.0
N2—C10—C11111.0 (2)H29A—C29—H29B120.0
N2—C10—C21107.7 (2)C33—N5—C30108.4 (2)
C11—C10—C21110.2 (2)C33—N5—H5A110.0
N2—C10—H10109.3C30—N5—H5A110.0
C11—C10—H10109.3C33—N5—H5B110.0
C21—C10—H10109.3C30—N5—H5B110.0
C12—C11—C15118.4 (3)H5A—N5—H5B108.4
C12—C11—C10120.1 (3)N5—C30—C34110.9 (2)
C15—C11—C10121.5 (3)N5—C30—C31104.7 (2)
C11—C12—C13120.2 (3)C34—C30—C31111.1 (2)
C11—C12—H12119.9N5—C30—H30110.0
C13—C12—H12119.9C34—C30—H30110.0
N3—C13—C12123.1 (3)C31—C30—H30110.0
N3—C13—H13118.4C32—C31—C30103.7 (3)
C12—C13—H13118.4C32—C31—H31A111.0
N3—C14—C19117.8 (3)C30—C31—H31A111.0
N3—C14—C15122.8 (3)C32—C31—H31B111.0
C19—C14—C15119.4 (3)C30—C31—H31B111.0
C16—C15—C14118.0 (3)H31A—C31—H31B109.0
C16—C15—C11124.7 (3)C31—C32—C33103.0 (3)
C14—C15—C11117.3 (3)C31—C32—H32A111.2
C17—C16—C15121.5 (3)C33—C32—H32A111.2
C17—C16—H16119.3C31—C32—H32B111.2
C15—C16—H16119.3C33—C32—H32B111.2
O1—C17—C16116.0 (3)H32A—C32—H32B109.1
O1—C17—C18123.9 (3)N5—C33—C32103.4 (3)
C16—C17—C18120.1 (3)N5—C33—H33A111.1
C19—C18—C17119.9 (3)C32—C33—H33A111.1
C19—C18—H18120.0N5—C33—H33B111.1
C17—C18—H18120.0C32—C33—H33B111.1
C18—C19—C14121.1 (3)H33A—C33—H33B109.0
C18—C19—H19119.5O3—C34—O2127.2 (3)
C14—C19—H19119.5O3—C34—C30115.9 (2)
O1—C20—H20A109.5O2—C34—C30116.9 (3)
O1—C20—H20B109.5C35—O4—H4O105.2
H20A—C20—H20B109.5O4—C35—H36A109.5
O1—C20—H20C109.5O4—C35—H36B109.5
H20A—C20—H20C109.5H36A—C35—H36B109.5
H20B—C20—H20C109.5O4—C35—H36C109.5
N4—C21—C10111.5 (2)H36A—C35—H36C109.5
N4—C21—C22110.1 (2)H36B—C35—H36C109.5
C10—C21—C22113.8 (2)
C10—N2—C1—N1174.2 (2)C14—C15—C16—C170.4 (4)
C10—N2—C1—S15.1 (4)C11—C15—C16—C17179.7 (3)
C2—N1—C1—N2169.3 (3)C20—O1—C17—C16171.7 (3)
C2—N1—C1—S111.5 (4)C20—O1—C17—C188.2 (5)
C1—N1—C2—C738.0 (4)C15—C16—C17—O1178.8 (3)
C1—N1—C2—C3146.9 (3)C15—C16—C17—C181.3 (5)
C7—C2—C3—C42.4 (4)O1—C17—C18—C19178.9 (3)
N1—C2—C3—C4177.6 (3)C16—C17—C18—C191.2 (5)
C2—C3—C4—C52.1 (4)C17—C18—C19—C140.3 (5)
C2—C3—C4—C8177.8 (3)N3—C14—C19—C18179.3 (3)
C3—C4—C5—C60.4 (4)C15—C14—C19—C180.5 (5)
C8—C4—C5—C6179.4 (3)C26—N4—C21—C10160.9 (2)
C4—C5—C6—C71.0 (4)C25—N4—C21—C1081.6 (3)
C4—C5—C6—C9176.3 (3)C26—N4—C21—C2271.8 (3)
N1—C2—C7—C6176.0 (3)C25—N4—C21—C2245.7 (3)
C3—C2—C7—C61.0 (4)N2—C10—C21—N466.2 (3)
C5—C6—C7—C20.7 (4)C11—C10—C21—N4172.7 (2)
C9—C6—C7—C2176.7 (3)N2—C10—C21—C22168.5 (2)
C3—C4—C8—F13.3 (4)C11—C10—C21—C2247.4 (3)
C5—C4—C8—F1176.6 (3)N4—C21—C22—C2319.9 (3)
C3—C4—C8—F2123.8 (3)C10—C21—C22—C23145.9 (3)
C5—C4—C8—F256.1 (4)C21—C22—C23—C2746.9 (3)
C3—C4—C8—F3117.8 (3)C21—C22—C23—C2470.5 (3)
C5—C4—C8—F362.3 (4)C22—C23—C24—C2875.7 (3)
C5—C6—C9—F5112.8 (3)C27—C23—C24—C28166.2 (3)
C7—C6—C9—F564.5 (4)C22—C23—C24—C2548.3 (3)
C5—C6—C9—F412.2 (4)C27—C23—C24—C2569.8 (3)
C7—C6—C9—F4170.4 (3)C26—N4—C25—C2448.2 (3)
C5—C6—C9—F6129.9 (3)C21—N4—C25—C2468.7 (3)
C7—C6—C9—F652.7 (4)C28—C24—C25—N4141.8 (3)
C1—N2—C10—C1171.9 (3)C23—C24—C25—N417.8 (3)
C1—N2—C10—C21167.5 (3)C21—N4—C26—C2750.5 (3)
N2—C10—C11—C1248.9 (4)C25—N4—C26—C2767.9 (3)
C21—C10—C11—C1270.2 (3)C22—C23—C27—C2666.9 (3)
N2—C10—C11—C15134.2 (3)C24—C23—C27—C2651.2 (3)
C21—C10—C11—C15106.7 (3)N4—C26—C27—C2315.6 (3)
C15—C11—C12—C131.0 (4)C23—C24—C28—C2990.9 (5)
C10—C11—C12—C13176.0 (3)C25—C24—C28—C29148.4 (5)
C14—N3—C13—C120.1 (5)C33—N5—C30—C34122.3 (3)
C11—C12—C13—N31.1 (5)C33—N5—C30—C312.4 (3)
C13—N3—C14—C19178.9 (3)N5—C30—C31—C3226.2 (3)
C13—N3—C14—C151.4 (5)C34—C30—C31—C32146.0 (3)
N3—C14—C15—C16179.3 (3)C30—C31—C32—C3340.0 (3)
C19—C14—C15—C160.5 (4)C30—N5—C33—C3222.2 (3)
N3—C14—C15—C111.4 (4)C31—C32—C33—N538.3 (4)
C19—C14—C15—C11178.8 (3)N5—C30—C34—O3173.5 (3)
C12—C11—C15—C16179.4 (3)C31—C30—C34—O370.4 (3)
C10—C11—C15—C163.6 (4)N5—C30—C34—O26.9 (4)
C12—C11—C15—C140.2 (4)C31—C30—C34—O2109.1 (3)
C10—C11—C15—C14177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.881.872.749 (3)177
N2—H2n···O3i0.881.952.806 (3)165
N5—H5a···N40.922.162.912 (3)138
N5—H5a···O3i0.922.403.111 (3)134
N5—H5b···O4ii0.922.032.858 (3)149
O4—H4o···N3iii0.841.982.805 (4)168
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC29H28F6N4OS·C5H9NO2·CH4O
Mr741.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)98
a, b, c (Å)11.597 (3), 13.044 (4), 23.907 (7)
V3)3616.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.28 × 0.25 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.722, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26093, 8250, 7519
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.149, 1.06
No. of reflections8250
No. of parameters471
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.27
Absolute structureFlack (1983), 3638 Friedel pairs
Absolute structure parameter0.03 (10)

Computer programs: CrystalClear (Rigaku/MSC 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.881.872.749 (3)177
N2—H2n···O3i0.881.952.806 (3)165
N5—H5a···N40.922.162.912 (3)138
N5—H5a···O3i0.922.403.111 (3)134
N5—H5b···O4ii0.922.032.858 (3)149
O4—H4o···N3iii0.841.982.805 (4)168
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1; (iii) x, y1, z+1.
 

Footnotes

Data reported in this paper were previously deposited with the CCDC (No. 727265).

Additional correspondence author, e-mail: cong.zhao@utsa.edu.

Acknowledgements

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMandal, T. & Zhao, C.-G. (2008). Angew Chem. Int Ed. 47, 7714–7717.  Web of Science CrossRef CAS Google Scholar
First citationMuramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVakulya, B., Varga, S., Csámpai, A. & Soós, T. (2005). Org. Lett. 7, 1967–1969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds