inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­copper(II)]-μ-tri­thionato-κ2O:O′]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 November 2009; accepted 7 November 2009; online 14 November 2009)

The title supra­molecular polymer, [Cu(S3O6)(H2O)4]n, features a tetra­gonally distorted octa­hedral CuII centre within an O6 donor set with the longer Cu—O bonds linking the dication and the trithio­nate dianion. Extensive O—H⋯O hydrogen-bonding inter­actions connect the supra­molecular chains into a three-dimensional network.

Related literature

For crystal structures containing the trithionate anion, see: Chun et al. (2000[Chun, H., Jackson, W. G., McKeon, J. A., Somoza, F. B. Jr & Bernal, I. (2000). Eur. J. Inorg. Chem. pp. 189-193.]); Díaz de Vivar et al. (2005[Díaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2005). Acta Cryst. C61, m289-m291.]); Ferrari et al. (1977[Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1977). Chem. Commun. p. 8.]). For related copper(II) structures with bridging di-sulfonato ligands, see: Charbonnier et al. (1977a[Charbonnier, F., Faure, R. & Loiseleur, H. (1977a). Acta Cryst. B33, 3342-3345.],b[Charbonnier, F., Faure, R. & Loiseleur, H. (1977b). Acta Cryst. B33, 3759-3761.]); Pasquale et al. (2007[Pasquale, M. A., Bolzán, A. E., Güida, J. A., Piatti, R. C. V., Arvia, A. J., Piro, O. E. & Castellano, E. E. (2007). Solid State Sci. 9, 862-868.]); Wang et al. (2005[Wang, L., Yu, X.-L., Cai, J. & Huang, J.-W. (2005). J. Chem. Crystallogr. 35, 481-486.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(S3O6)(H2O)4]

  • Mr = 327.78

  • Monoclinic, P 21 /n

  • a = 7.1816 (1) Å

  • b = 21.4405 (4) Å

  • c = 7.7286 (1) Å

  • β = 116.092 (1)°

  • V = 1068.75 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 1

  • 9081 measured reflections

  • 2434 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 2434 reflections

  • 151 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O3 2.001 (3)
Cu—O1 2.002 (3)
Cu—O2 2.045 (3)
Cu—O4 2.047 (3)
Cu—O5 2.524 (3)
Cu—O8i 2.564 (3)
Symmetry code: (i) x+1, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O9 0.84 2.29 3.080 (5) 157
O1—H2o⋯O9ii 0.84 2.25 3.071 (4) 166
O2—H3o⋯O10i 0.84 2.44 3.079 (5) 133
O2—H4o⋯O6iii 0.84 2.21 3.026 (4) 165
O3—H5o⋯O6iii 0.84 2.16 2.987 (4) 169
O3—H6o⋯O10iv 0.84 2.20 3.037 (5) 174
O4—H7o⋯O9iv 0.84 2.56 3.383 (5) 166
O4—H8o⋯O8ii 0.84 2.42 3.149 (4) 146
Symmetry codes: (i) x+1, y, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was obtained from an hydrothernal synthesis (see Experimental) and characterized crystallographically. The asymmetric unit comprises a tetraaqua copper(II) cation and a trithionato dianion, Fig. 1. In the crystal structure, the ions are connected as each trithionato dianion bridges two CuII centres thereby forming a supramolecular chain, Fig. 2. The CuII centre exists in a tetragonally distorted O6 octahedron with the Cu—Oaqua bonds [2.047 (3) - 2.047 (3) Å] being significantly shorter than the Cu—Otrithionato bonds [2.524 (3) and 2.564 (3) Å]. The Cu atom lies 0.025 (2) out of the basal plane defined by the four aqua-O atoms (RMS = 0.080 Å) in the direction of the O8i atom, and the O5–Cu–O8i axial angle is 157.74 (10) ° for i: 1 + x, y, 1 + z. Within the trithionato dianion, the S1–S2 and S2–S3 bond distances are 2.1450 (11) and 2.1184 (12) Å, respectively, and the S1–S2–S3 angle is 101.68 (5) Å. In the crystal structure, there is a considerable number of hydrogen bonding interactions. These occur within the supramolecular chain as well as between chains to form a 2-D array in the ac plane, Fig. 3. Connections between layers lead to a 3-D network, Fig. 4.

Structures containing the trithionato dianion are comparatively rare, with only three such examples (Chun et al., 2000; Díaz de Vivar et al., 2005; Ferrari et al., 1977). In the same way, structures having [Cu(OH2)4]2+ centres bridged by bi-functional sulfonato ligands are uncommon (Charbonnier et al., 1977a, b; Pasquale et al., 2007; Wang et al., 2005).

Related literature top

For crystal structures containing the trithionato anion, see: Chun et al. (2000); Díaz de Vivar et al. (2005); Ferrari et al. (1977). For related copper(II) structures with bridging di-sulfonato ligands, see: Charbonnier et al. (1977a,b); Pasquale et al. (2007); Wang et al. (2005).

Experimental top

The blue crystal used in the present study was harvested from the hydrothermal reaction of stoichiometric amounts of CuCl, SeS2, S, and N2H4.H2O. The reagents were heated to 420 K for 3 d in a 25 ml Teflon-lined stainless-steel autoclave. After the reaction, the bomb was cooled to room temperature. The solution was filtered and layered with methanol. After four weeks, blue needles of (I) were collected and dried in air.

Refinement top

The O-bound H-atoms were located in a difference Fourier map and were refined with O–H and H···H restraints of 0.840±0.001 Å and 1.39±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I) extended to show the coordination geometry about the Cu atom, showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 1 + x, y, 1 + z.
[Figure 2] Fig. 2. Supramolecular chain formation in (I). Colour code: Cu, brown; S, yellow; O, red; and H, green.
[Figure 3] Fig. 3. Supramolecular layer formation in (I) viewed in projection down the b axis. Chains shown in Fig. 2 are linked via O–H···O (orange dashed lines) hydrogen bonds. Colour code as for Fig. 2.
[Figure 4] Fig. 4. Unit-cell contents for (I) highlighting the 3-D network. The O–H···O hydrogen bonds are shown as orange dashed lines. Colour code as for Fig. 2.
catena-Poly[[tetraaquacopper(II)]-µ-trithionato- κ2O:O'] top
Crystal data top
[Cu(S3O6)(H2O)4]F(000) = 660
Mr = 327.78Dx = 2.037 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6028 reflections
a = 7.1816 (1) Åθ = 3.1–27.6°
b = 21.4405 (4) ŵ = 2.66 mm1
c = 7.7286 (1) ÅT = 100 K
β = 116.092 (1)°Needle, blue
V = 1068.75 (3) Å30.30 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2434 independent reflections
Radiation source: sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.911, Tmax = 1k = 2727
9081 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0493P)2 + 7.019P]
where P = (Fo2 + 2Fc2)/3
2434 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 1.47 e Å3
12 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(S3O6)(H2O)4]V = 1068.75 (3) Å3
Mr = 327.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1816 (1) ŵ = 2.66 mm1
b = 21.4405 (4) ÅT = 100 K
c = 7.7286 (1) Å0.30 × 0.10 × 0.05 mm
β = 116.092 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2434 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2291 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 1Rint = 0.020
9081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 1.47 e Å3
2434 reflectionsΔρmin = 0.84 e Å3
151 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.19601 (7)0.85880 (2)0.51918 (6)0.01169 (14)
O10.2615 (5)0.81059 (15)0.3309 (5)0.0268 (7)
H1O0.14750.80790.23230.040*
H2O0.31040.77530.37520.040*
O20.2609 (5)0.93801 (15)0.4087 (5)0.0287 (7)
H3O0.37910.93530.41200.043*
H4O0.24800.97100.46110.043*
O30.1488 (5)0.90825 (15)0.7159 (5)0.0264 (7)
H5O0.18200.94590.71880.040*
H6O0.02330.90460.69190.040*
O40.1007 (5)0.77999 (16)0.6068 (5)0.0293 (7)
H7O0.05260.78400.68760.044*
H8O0.03110.75470.51900.044*
S10.31167 (13)0.90509 (4)0.20735 (12)0.01136 (19)
S20.27573 (13)0.94093 (4)0.03534 (11)0.00925 (18)
S30.28093 (13)0.85804 (4)0.18661 (12)0.0127 (2)
O50.1785 (4)0.85083 (12)0.2738 (4)0.0145 (5)
O60.2390 (5)0.95873 (13)0.3340 (4)0.0194 (6)
O70.5286 (4)0.89104 (14)0.1427 (4)0.0185 (6)
O80.4614 (4)0.82243 (13)0.2060 (4)0.0168 (5)
O90.0873 (4)0.82490 (13)0.0809 (4)0.0169 (5)
O100.2992 (4)0.88484 (15)0.3653 (4)0.0207 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0123 (2)0.0112 (2)0.0125 (2)0.00021 (15)0.00630 (17)0.00000 (15)
O10.0282 (16)0.0247 (15)0.0250 (16)0.0013 (13)0.0094 (13)0.0021 (12)
O20.0325 (17)0.0244 (16)0.0334 (18)0.0006 (13)0.0183 (15)0.0002 (13)
O30.0279 (16)0.0248 (15)0.0277 (16)0.0018 (12)0.0133 (14)0.0020 (12)
O40.0320 (17)0.0271 (16)0.0283 (17)0.0018 (13)0.0130 (14)0.0019 (13)
S10.0125 (4)0.0115 (4)0.0101 (4)0.0007 (3)0.0050 (3)0.0010 (3)
S20.0132 (4)0.0077 (4)0.0085 (4)0.0006 (3)0.0063 (3)0.0003 (3)
S30.0111 (4)0.0163 (4)0.0106 (4)0.0000 (3)0.0047 (3)0.0002 (3)
O50.0164 (13)0.0124 (12)0.0133 (12)0.0027 (10)0.0052 (10)0.0026 (9)
O60.0286 (15)0.0139 (13)0.0148 (13)0.0004 (11)0.0087 (11)0.0020 (10)
O70.0131 (13)0.0269 (15)0.0162 (13)0.0011 (11)0.0071 (11)0.0044 (11)
O80.0140 (12)0.0183 (13)0.0173 (13)0.0026 (10)0.0063 (10)0.0024 (10)
O90.0137 (12)0.0189 (13)0.0164 (13)0.0031 (10)0.0049 (10)0.0007 (10)
O100.0183 (13)0.0321 (16)0.0130 (13)0.0008 (12)0.0081 (11)0.0034 (11)
Geometric parameters (Å, º) top
Cu—O32.001 (3)O3—H6O0.8401
Cu—O12.002 (3)O4—H7O0.8401
Cu—O22.045 (3)O4—H8O0.8401
Cu—O42.047 (3)S1—O71.443 (3)
Cu—O52.524 (3)S1—O51.449 (3)
Cu—O8i2.564 (3)S1—O61.450 (3)
O1—H1O0.8401S1—S22.1450 (11)
O1—H2O0.8401S2—S32.1184 (12)
O2—H3O0.8401S3—O101.448 (3)
O2—H4O0.8401S3—O91.452 (3)
O3—H5O0.8401S3—O81.454 (3)
O3—Cu—O1176.54 (14)Cu—O4—H8O116.6
O3—Cu—O291.32 (13)H7O—O4—H8O111.9
O1—Cu—O287.46 (13)O7—S1—O5113.51 (17)
O3—Cu—O489.60 (14)O7—S1—O6114.36 (18)
O1—Cu—O491.95 (14)O5—S1—O6114.32 (16)
O2—Cu—O4174.05 (14)O7—S1—S2107.39 (12)
Cu—O1—H1O104.4O5—S1—S2106.44 (12)
Cu—O1—H2O111.0O6—S1—S299.21 (12)
H1O—O1—H2O111.9S3—S2—S1101.68 (5)
Cu—O2—H3O110.1O10—S3—O9113.18 (17)
Cu—O2—H4O113.9O10—S3—O8114.04 (17)
H3O—O2—H4O111.5O9—S3—O8113.01 (17)
Cu—O3—H5O112.9O10—S3—S299.54 (13)
Cu—O3—H6O107.9O9—S3—S2108.67 (12)
H5O—O3—H6O111.2O8—S3—S2107.22 (12)
Cu—O4—H7O118.0
O7—S1—S2—S378.83 (14)S1—S2—S3—O10168.90 (12)
O5—S1—S2—S343.05 (12)S1—S2—S3—O972.54 (13)
O6—S1—S2—S3161.92 (13)S1—S2—S3—O849.91 (13)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O90.842.293.080 (5)157
O1—H2o···O9ii0.842.253.071 (4)166
O2—H3o···O10i0.842.443.079 (5)133
O2—H4o···O6iii0.842.213.026 (4)165
O3—H5o···O6iii0.842.162.987 (4)169
O3—H6o···O10iv0.842.203.037 (5)174
O4—H7o···O9iv0.842.563.383 (5)166
O4—H8o···O8ii0.842.423.149 (4)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(S3O6)(H2O)4]
Mr327.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.1816 (1), 21.4405 (4), 7.7286 (1)
β (°) 116.092 (1)
V3)1068.75 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9081, 2434, 2291
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.03
No. of reflections2434
No. of parameters151
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.84

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Cu—O32.001 (3)Cu—O42.047 (3)
Cu—O12.002 (3)Cu—O52.524 (3)
Cu—O22.045 (3)Cu—O8i2.564 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O90.842.293.080 (5)157
O1—H2o···O9ii0.842.253.071 (4)166
O2—H3o···O10i0.842.443.079 (5)133
O2—H4o···O6iii0.842.213.026 (4)165
O3—H5o···O6iii0.842.162.987 (4)169
O3—H6o···O10iv0.842.203.037 (5)174
O4—H7o···O9iv0.842.563.383 (5)166
O4—H8o···O8ii0.842.423.149 (4)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y, z+1.
 

Acknowledgements

Dr Zhang Qichun, Nanyang Technological University, is gratefully thanked for the sample.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharbonnier, F., Faure, R. & Loiseleur, H. (1977a). Acta Cryst. B33, 3342–3345.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCharbonnier, F., Faure, R. & Loiseleur, H. (1977b). Acta Cryst. B33, 3759–3761.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChun, H., Jackson, W. G., McKeon, J. A., Somoza, F. B. Jr & Bernal, I. (2000). Eur. J. Inorg. Chem. pp. 189–193.  CrossRef Google Scholar
First citationDíaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2005). Acta Cryst. C61, m289–m291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerrari, M. B., Fava, G. G. & Pelizzi, C. (1977). Chem. Commun. p. 8.  CrossRef Google Scholar
First citationPasquale, M. A., Bolzán, A. E., Güida, J. A., Piatti, R. C. V., Arvia, A. J., Piro, O. E. & Castellano, E. E. (2007). Solid State Sci. 9, 862–868.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Yu, X.-L., Cai, J. & Huang, J.-W. (2005). J. Chem. Crystallogr. 35, 481–486.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds